free picard categories
play

Free Picard Categories Michael Horst The Ohio State University - PowerPoint PPT Presentation

Free Picard Categories Michael Horst The Ohio State University horst.59@osu.edu https://u.osu.edu/horst.59/ October 28, 2018 Michael Horst OSU Picard Categories Michael Horst OSU Picard Categories Groupoid Michael Horst OSU Picard


  1. Free Picard Categories Michael Horst The Ohio State University horst.59@osu.edu https://u.osu.edu/horst.59/ October 28, 2018 Michael Horst OSU

  2. Picard Categories Michael Horst OSU

  3. Picard Categories Groupoid Michael Horst OSU

  4. Picard Categories Groupoid Symmetric monoidal Michael Horst OSU

  5. Picard Categories Groupoid Symmetric monoidal Group-like Michael Horst OSU

  6. Picard Categories Groupoid Symmetric monoidal Group-like: For all X , there is a Y such that X ⊗ Y ∼ = I ∼ = Y ⊗ X Michael Horst OSU

  7. Picard Categories Groupoid Symmetric monoidal Group-like: For all X , there is a Y such that X ⊗ Y ∼ = I ∼ = Y ⊗ X Essential data: Michael Horst OSU

  8. Picard Categories Groupoid Symmetric monoidal Group-like: For all X , there is a Y such that X ⊗ Y ∼ = I ∼ = Y ⊗ X Essential data: π 0 ( C ) = Obj ( C ) / ∼ = Michael Horst OSU

  9. Picard Categories Groupoid Symmetric monoidal Group-like: For all X , there is a Y such that X ⊗ Y ∼ = I ∼ = Y ⊗ X Essential data: π 0 ( C ) = Obj ( C ) / ∼ = π 1 ( C ) = C ( I , I ) Michael Horst OSU

  10. Picard Categories Groupoid Symmetric monoidal Group-like: For all X , there is a Y such that X ⊗ Y ∼ = I ∼ = Y ⊗ X Essential data: π 0 ( C ) = Obj ( C ) / ∼ = π 1 ( C ) = C ( I , I ) K : π 0 ( C ) → π 1 ( C ), X �→ β X , X ∈ C ( X ⊗ X , X ⊗ X ) ∼ = π 1 ( C ) Michael Horst OSU

  11. Examples Michael Horst OSU

  12. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Michael Horst OSU

  13. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Michael Horst OSU

  14. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Π 1 X for X ∈ Ω 2 Top Michael Horst OSU

  15. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Π 1 X for X ∈ Ω 2 Top Z , “Super Integers” Michael Horst OSU

  16. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Π 1 X for X ∈ Ω 2 Top Z , “Super Integers” Obj ( Z ) = Z Michael Horst OSU

  17. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Π 1 X for X ∈ Ω 2 Top Z , “Super Integers” � Z / 2 , if n = m Obj ( Z ) = Z , Z ( n , m ) ∼ = 0 , else Michael Horst OSU

  18. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Π 1 X for X ∈ Ω 2 Top Z , “Super Integers” � Z / 2 , if n = m Obj ( Z ) = Z , Z ( n , m ) ∼ = 0 , else Call Z ( n , n ) = {± 1 n } Michael Horst OSU

  19. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Π 1 X for X ∈ Ω 2 Top Z , “Super Integers” � Z / 2 , if n = m Obj ( Z ) = Z , Z ( n , m ) ∼ = 0 , else Call Z ( n , n ) = {± 1 n } ( β : n + m → m + n ) = ( − 1 n + m ) nm Michael Horst OSU

  20. Main Result Michael Horst OSU

  21. Main Result Theorem (H) The forgetful functor U : Pic → Grpd has a left adjoint given by Z [ ] : Grpd → Pic . Michael Horst OSU

  22. Main Result Theorem (H) The forgetful functor U : Pic → Grpd has a left adjoint given by Z [ ] : Grpd → Pic . Specifically: For G ∈ Grpd and A ∈ Pic , Pic ( Z [ G ] , A ) ≃ Grpd ( G , A ) as Picard categories, natural in G and A . Michael Horst OSU

  23. Free Picard Category Michael Horst OSU

  24. Free Picard Category For G ∈ Grpd , define Z [ G ] ∈ Pic Michael Horst OSU

  25. Free Picard Category For G ∈ Grpd , define Z [ G ] ∈ Pic k � Obj ( Z [ G ]): n i . G i , for n i ∈ Z and G i ∈ G i =1 Michael Horst OSU

  26. Free Picard Category For G ∈ Grpd , define Z [ G ] ∈ Pic k � Obj ( Z [ G ]): n i . G i , for n i ∈ Z and G i ∈ G i =1 0 � 0 := i =1 Michael Horst OSU

  27. Free Picard Category For G ∈ Grpd , define Z [ G ] ∈ Pic k � Obj ( Z [ G ]): n i . G i , for n i ∈ Z and G i ∈ G i =1 0 � 0 := i =1 Monoidal product: concatenation Michael Horst OSU

  28. Free Picard Category Mor ( Z [ G ]): generated under + and ◦ by Michael Horst OSU

  29. Free Picard Category Mor ( Z [ G ]): generated under + and ◦ by ± 1 n . g : nG → nG ′ , for g : G → G ′ ∈ G Michael Horst OSU

  30. Free Picard Category Mor ( Z [ G ]): generated under + and ◦ by ± 1 n . g : nG → nG ′ , for g : G → G ′ ∈ G β : nG + n ′ G ′ → n ′ G ′ + nG Michael Horst OSU

  31. Free Picard Category Mor ( Z [ G ]): generated under + and ◦ by ± 1 n . g : nG → nG ′ , for g : G → G ′ ∈ G β : nG + n ′ G ′ → n ′ G ′ + nG δ : ( n + Z n ′ ) G → nG + n ′ G Michael Horst OSU

  32. Free Picard Category Mor ( Z [ G ]): generated under + and ◦ by ± 1 n . g : nG → nG ′ , for g : G → G ′ ∈ G β : nG + n ′ G ′ → n ′ G ′ + nG δ : ( n + Z n ′ ) G → nG + n ′ G ζ : 0 Z G → 0 Michael Horst OSU

  33. Free Picard Category These morphisms subject to Michael Horst OSU

  34. Free Picard Category These morphisms subject to ( f . g ) ◦ ( f ′ . g ′ ) = ( f ◦ f ′ ) . ( g ◦ g ′ ), for f , f ′ ∈ Mor ( Z ), g , g ′ ∈ Mor ( G ) Michael Horst OSU

  35. Free Picard Category These morphisms subject to ( f . g ) ◦ ( f ′ . g ′ ) = ( f ◦ f ′ ) . ( g ◦ g ′ ), for f , f ′ ∈ Mor ( Z ), g , g ′ ∈ Mor ( G ) + is functorial with respect to ◦ Michael Horst OSU

  36. Free Picard Category These morphisms subject to ( f . g ) ◦ ( f ′ . g ′ ) = ( f ◦ f ′ ) . ( g ◦ g ′ ), for f , f ′ ∈ Mor ( Z ), g , g ′ ∈ Mor ( G ) + is functorial with respect to ◦ Braided hexagon That β, δ, and ζ are monoidal natural β ◦ β = Id Michael Horst OSU

  37. Free Picard Category These morphisms subject to ( f . g ) ◦ ( f ′ . g ′ ) = ( f ◦ f ′ ) . ( g ◦ g ′ ), for f , f ′ ∈ Mor ( Z ), g , g ′ ∈ Mor ( G ) + is functorial with respect to ◦ Braided hexagon That β, δ, and ζ are monoidal natural β ◦ β = Id ( n + Z n ′ + Z + n ′′ ) G δ ( n + Z n ′ ) G + n ′′ G δ δ +Id nG + ( n ′ + Z n ′′ ) G nG + n ′ G + n ′′ G Id+ δ Michael Horst OSU

  38. Free Picard Category β Z G ( n ′ + Z n ) G ( n + Z n ′ ) G δ δ nG + n ′ G n ′ G + nG β Michael Horst OSU

  39. Free Picard Category β Z G ( n ′ + Z n ) G ( n + Z n ′ ) G δ δ nG + n ′ G n ′ G + nG β δ (0 Z + Z n ) G 0 Z G + nG = ζ +Id nG 0 + nG = Michael Horst OSU

  40. Free Picard Category β Z G ( n ′ + Z n ) G ( n + Z n ′ ) G δ δ nG + n ′ G n ′ G + nG β δ (0 Z + Z n ) G 0 Z G + nG = ζ +Id nG 0 + nG = Note: nG + ( − n ) G ∼ = ( n − n ) G = 0 Z G ∼ = 0 Michael Horst OSU

  41. Proof Highlights Michael Horst OSU

  42. Proof Highlights Grpd ( G , A ) ∋ F �→ F ∈ Pic ( Z [ G ] , A ) Michael Horst OSU

  43. Proof Highlights Grpd ( G , A ) ∋ F �→ F ∈ Pic ( Z [ G ] , A ) F ( n . G ) = � | n | sgn( n ) F ( G ) Michael Horst OSU

  44. Proof Highlights Grpd ( G , A ) ∋ F �→ F ∈ Pic ( Z [ G ] , A ) F ( n . G ) = � | n | sgn( n ) F ( G ) �� n i . G i + � n ′ = F ( � n i . G i ) + F �� n ′ � � j . G ′ j . G ′ F j j Michael Horst OSU

  45. Proof Highlights Grpd ( G , A ) ∋ F �→ F ∈ Pic ( Z [ G ] , A ) F ( n . G ) = � | n | sgn( n ) F ( G ) �� n i . G i + � n ′ = F ( � n i . G i ) + F �� n ′ � � j . G ′ j . G ′ F j j F (1 n . g : n . G → n . G ′ ) = � | n | sgn( n ) F ( g ) Michael Horst OSU

  46. Proof Highlights Grpd ( G , A ) ∋ F �→ F ∈ Pic ( Z [ G ] , A ) F ( n . G ) = � | n | sgn( n ) F ( G ) �� n i . G i + � n ′ = F ( � n i . G i ) + F �� n ′ � � j . G ′ j . G ′ F j j F (1 n . g : n . G → n . G ′ ) = � | n | sgn( n ) F ( g ) F ( − 1 1+ n . Id G ) = K F ( G ) + � | n | sgn( n )Id F ( G ) Michael Horst OSU

  47. Proof Highlights Pic ( Z [ G ] , A ) ∋ F �→ u F ∈ Grpd ( G , A ) Michael Horst OSU

  48. Proof Highlights Pic ( Z [ G ] , A ) ∋ F �→ u F ∈ Grpd ( G , A ) u F ( G ) = F (1 . G ) Michael Horst OSU

  49. Proof Highlights Pic ( Z [ G ] , A ) ∋ F �→ u F ∈ Grpd ( G , A ) u F ( G ) = F (1 . G ) u F ( g : G → G ′ ) = F (1 1 . g ) Michael Horst OSU

  50. Proof Highlights Pic ( Z [ G ] , A ) ∋ F �→ u F ∈ Grpd ( G , A ) u F ( G ) = F (1 . G ) u F ( g : G → G ′ ) = F (1 1 . g ) u ( F ) = F Michael Horst OSU

  51. Proof Highlights Pic ( Z [ G ] , A ) ∋ F �→ u F ∈ Grpd ( G , A ) u F ( G ) = F (1 . G ) u F ( g : G → G ′ ) = F (1 1 . g ) u ( F ) = F �� � F ( n . G ) ∼ | n | sgn( n ) . G F ( δ ) F = Michael Horst OSU

  52. Proof Highlights Pic ( Z [ G ] , A ) ∋ F �→ u F ∈ Grpd ( G , A ) u F ( G ) = F (1 . G ) u F ( g : G → G ′ ) = F (1 1 . g ) u ( F ) = F �� � F ( n . G ) ∼ ∼ | n | sgn( n ) . G = � | n | F (sgn( n ) . G ) F ( δ ) F = ∼ = � | n | sgn( n ) F (1 . G ) = u F ( n . G ) Michael Horst OSU

  53. Group rings and the free module Michael Horst OSU

  54. Group rings and the free module Conjecture For G ∈ Pic , Z [ G ] categorifies the group ring, in that Z [ ] CMon( Pic , ∗ ) Pic π 0 ⊣ ⊣ π 0 CMon( Ab , ⊗ ) Ab Z [ ] Michael Horst OSU

Recommend


More recommend