foundation of cryptography 0368 4162 01 lecture 3
play

Foundation of Cryptography (0368-4162-01), Lecture 3 Hardcore - PowerPoint PPT Presentation

The Information Theoretic Case The Computational Case Foundation of Cryptography (0368-4162-01), Lecture 3 Hardcore Predicates for Any One-way Function Iftach Haitner, Tel Aviv University November 22, 2011 The Information Theoretic Case The


  1. The Information Theoretic Case The Computational Case Foundation of Cryptography (0368-4162-01), Lecture 3 Hardcore Predicates for Any One-way Function Iftach Haitner, Tel Aviv University November 22, 2011

  2. The Information Theoretic Case The Computational Case Definition 1 (hardcore predicates) An efficiently computable function b : { 0 , 1 } n �→ { 0 , 1 } is an hardcore predicate of f : { 0 , 1 } n �→ { 0 , 1 } n , if Pr [ P ( f ( U n )) = b ( U n )] ≤ 1 2 + neg ( n ) , for any PPT P .

  3. The Information Theoretic Case The Computational Case Definition 1 (hardcore predicates) An efficiently computable function b : { 0 , 1 } n �→ { 0 , 1 } is an hardcore predicate of f : { 0 , 1 } n �→ { 0 , 1 } n , if Pr [ P ( f ( U n )) = b ( U n )] ≤ 1 2 + neg ( n ) , for any PPT P . Theorem 2 (Goldreich-Levin) Let f : { 0 , 1 } n �→ { 0 , 1 } n be a OWF, and define g : { 0 , 1 } n × { 0 , 1 } n �→ { 0 , 1 } n × { 0 , 1 } n as g ( x , r ) = f ( x ) , r. Then b ( x , r ) = � x , r � 2 , is an hardcore predicate of g. Note that if f is one-to-one, then so is g .

  4. The Information Theoretic Case The Computational Case Section 1 The Information Theoretic Case

  5. The Information Theoretic Case The Computational Case Definition 3 (min-entropy) The min entropy of a random variable X , is defined 1 H ∞ ( X ) := y ∈ Supp ( X ) log min Pr X [ y ] .

  6. The Information Theoretic Case The Computational Case Definition 3 (min-entropy) The min entropy of a random variable X , is defined 1 H ∞ ( X ) := y ∈ Supp ( X ) log min Pr X [ y ] . Examples X is uniform over a set of size 2 k

  7. The Information Theoretic Case The Computational Case Definition 3 (min-entropy) The min entropy of a random variable X , is defined 1 H ∞ ( X ) := y ∈ Supp ( X ) log min Pr X [ y ] . Examples X is uniform over a set of size 2 k ( X | f ( X ) = y ) , where f : { 0 , 1 } n �→ { 0 , 1 } n is 2 k to 1 and X is uniform over { 0 , 1 } n

  8. The Information Theoretic Case The Computational Case Pairwise independent hashing Pairwise independent hashing Definition 4 (pairwise independent hash functions) A function family H from { 0 , 1 } n to { 0 , 1 } m is pairwise independent, if for every x � = x ′ ∈ { 0 , 1 } n and y , y ′ ∈ { 0 , 1 } m , it holds that Pr h ←H [ h ( x ) = y ∧ h ( x ′ ) = y ′ )] = 2 − 2 m .

  9. The Information Theoretic Case The Computational Case Pairwise independent hashing Pairwise independent hashing Definition 4 (pairwise independent hash functions) A function family H from { 0 , 1 } n to { 0 , 1 } m is pairwise independent, if for every x � = x ′ ∈ { 0 , 1 } n and y , y ′ ∈ { 0 , 1 } m , it holds that Pr h ←H [ h ( x ) = y ∧ h ( x ′ ) = y ′ )] = 2 − 2 m . Lemma 5 (leftover hash lemma) Let X be a random variable over { 0 , 1 } n with H ∞ ( X ) ≥ k and let H be a family of pairwise independent hash functions from { 0 , 1 } n to { 0 , 1 } m , then SD (( h , h ( x )) h ←H , x ← X , ( h , y ) h ←H , y ←{ 0 , 1 } m ) ≤ 2 ( m − k − 2 )) / 2 .

  10. The Information Theoretic Case The Computational Case Pairwise independent hashing Pairwise independent hashing Definition 4 (pairwise independent hash functions) A function family H from { 0 , 1 } n to { 0 , 1 } m is pairwise independent, if for every x � = x ′ ∈ { 0 , 1 } n and y , y ′ ∈ { 0 , 1 } m , it holds that Pr h ←H [ h ( x ) = y ∧ h ( x ′ ) = y ′ )] = 2 − 2 m . Lemma 5 (leftover hash lemma) Let X be a random variable over { 0 , 1 } n with H ∞ ( X ) ≥ k and let H be a family of pairwise independent hash functions from { 0 , 1 } n to { 0 , 1 } m , then SD (( h , h ( x )) h ←H , x ← X , ( h , y ) h ←H , y ←{ 0 , 1 } m ) ≤ 2 ( m − k − 2 )) / 2 . * We typically simply write SD (( H , H ( X )) , ( H , U m )) , where H is uniformly distributed over H .

  11. The Information Theoretic Case The Computational Case efficient function families efficient function families Definition 6 (efficient function family) An ensemble of function families F = {F n } n ∈ N is efficient, if the following hold: Samplable. F is samplable in polynomial-time: there exists a PPT that given 1 n , outputs (the description of) a uniform element in F n . Efficient. There exists a polynomial-time algorithm that given x ∈ { 0 , 1 } n and (a description of) f ∈ F n , outputs f ( x ) .

  12. The Information Theoretic Case The Computational Case hardcore predicate for regular functions hardcore predicate for regular OWF Lemma 7 Let f : { 0 , 1 } n �→ { 0 , 1 } n be a d ( n ) ∈ 2 ω ( log n ) regular function and let H = {H n } be an efficient family of Boolean pairwise independent hash functions over { 0 , 1 } n . Define g : { 0 , 1 } n × H n �→ { 0 , 1 } n × H n as g ( x , h ) = ( f ( x ) , h ) , then b ( x , h ) = h ( x ) is an hardcore predicate of g.

  13. The Information Theoretic Case The Computational Case hardcore predicate for regular functions hardcore predicate for regular OWF Lemma 7 Let f : { 0 , 1 } n �→ { 0 , 1 } n be a d ( n ) ∈ 2 ω ( log n ) regular function and let H = {H n } be an efficient family of Boolean pairwise independent hash functions over { 0 , 1 } n . Define g : { 0 , 1 } n × H n �→ { 0 , 1 } n × H n as g ( x , h ) = ( f ( x ) , h ) , then b ( x , h ) = h ( x ) is an hardcore predicate of g. How does it relate to the computational case?

  14. The Information Theoretic Case The Computational Case hardcore predicate for regular functions hardcore predicate for regular OWF Lemma 7 Let f : { 0 , 1 } n �→ { 0 , 1 } n be a d ( n ) ∈ 2 ω ( log n ) regular function and let H = {H n } be an efficient family of Boolean pairwise independent hash functions over { 0 , 1 } n . Define g : { 0 , 1 } n × H n �→ { 0 , 1 } n × H n as g ( x , h ) = ( f ( x ) , h ) , then b ( x , h ) = h ( x ) is an hardcore predicate of g. How does it relate to the computational case? Proof : We prove the claim by showing that Claim 8 SD (( f ( U n ) , H , H ( U n )) , ( f ( U n ) , H , U 1 )) = neg ( n ) , where the rv H = H ( n ) is uniformly distributed over H n .

  15. The Information Theoretic Case The Computational Case hardcore predicate for regular functions hardcore predicate for regular OWF Lemma 7 Let f : { 0 , 1 } n �→ { 0 , 1 } n be a d ( n ) ∈ 2 ω ( log n ) regular function and let H = {H n } be an efficient family of Boolean pairwise independent hash functions over { 0 , 1 } n . Define g : { 0 , 1 } n × H n �→ { 0 , 1 } n × H n as g ( x , h ) = ( f ( x ) , h ) , then b ( x , h ) = h ( x ) is an hardcore predicate of g. How does it relate to the computational case? Proof : We prove the claim by showing that Claim 8 SD (( f ( U n ) , H , H ( U n )) , ( f ( U n ) , H , U 1 )) = neg ( n ) , where the rv H = H ( n ) is uniformly distributed over H n . Does this conclude the proof?

  16. The Information Theoretic Case The Computational Case hardcore predicate for regular functions Proving Claim 8 Proof : For y ∈ f ( { 0 , 1 } n ) := { f ( x ): x ∈ { 0 , 1 } n } , let the rv X y be uniformly distributed over f − 1 ( y ) := { x ∈ { 0 , 1 } n : f ( x ) = y } .

  17. The Information Theoretic Case The Computational Case hardcore predicate for regular functions Proving Claim 8 Proof : For y ∈ f ( { 0 , 1 } n ) := { f ( x ): x ∈ { 0 , 1 } n } , let the rv X y be uniformly distributed over f − 1 ( y ) := { x ∈ { 0 , 1 } n : f ( x ) = y } . SD (( f ( U n ) , H , H ( U n )) , ( f ( U n ) , H , U 1 )) � � = Pr [ f ( U n ) = y ] · SD ( f ( U n ) , H , H ( U n ) | f ( U n ) = y ) y ∈ f ( { 0 , 1 } n ) � , ( f ( U n ) , H , U 1 | f ( U n ) = y )

  18. The Information Theoretic Case The Computational Case hardcore predicate for regular functions Proving Claim 8 Proof : For y ∈ f ( { 0 , 1 } n ) := { f ( x ): x ∈ { 0 , 1 } n } , let the rv X y be uniformly distributed over f − 1 ( y ) := { x ∈ { 0 , 1 } n : f ( x ) = y } . SD (( f ( U n ) , H , H ( U n )) , ( f ( U n ) , H , U 1 )) � � = Pr [ f ( U n ) = y ] · SD ( f ( U n ) , H , H ( U n ) | f ( U n ) = y ) y ∈ f ( { 0 , 1 } n ) � , ( f ( U n ) , H , U 1 | f ( U n ) = y ) � = Pr [ f ( U n ) = y ] · SD (( y , H , H ( X y )) , ( y , H , U 1 )) y ∈ f ( { 0 , 1 } n )

  19. The Information Theoretic Case The Computational Case hardcore predicate for regular functions Proving Claim 8 Proof : For y ∈ f ( { 0 , 1 } n ) := { f ( x ): x ∈ { 0 , 1 } n } , let the rv X y be uniformly distributed over f − 1 ( y ) := { x ∈ { 0 , 1 } n : f ( x ) = y } . SD (( f ( U n ) , H , H ( U n )) , ( f ( U n ) , H , U 1 )) � � = Pr [ f ( U n ) = y ] · SD ( f ( U n ) , H , H ( U n ) | f ( U n ) = y ) y ∈ f ( { 0 , 1 } n ) � , ( f ( U n ) , H , U 1 | f ( U n ) = y ) � = Pr [ f ( U n ) = y ] · SD (( y , H , H ( X y )) , ( y , H , U 1 )) y ∈ f ( { 0 , 1 } n ) ≤ y ∈ f ( { 0 , 1 } n ) SD (( y , H , H ( X y )) , ( y , H , U 1 )) max

Recommend


More recommend