for integration in a
play

for Integration in a Realtime Vehicle Simulation Model Apply & - PowerPoint PPT Presentation

Vertical Dynamic Test Rig for Integration in a Realtime Vehicle Simulation Model Apply & Innovate 2016 Prof. Dr. Marcus Jautze 20.09.2016 Short Overview. Landshut University of applied sciences Landshut Near Munich Metropolitan


  1. Vertical Dynamic Test Rig for Integration in a Realtime Vehicle Simulation Model Apply & Innovate 2016 Prof. Dr. Marcus Jautze 20.09.2016

  2. Short Overview. Landshut University of applied sciences Landshut  Near Munich Metropolitan Region Munich  Foundation in 1978 Computer Science Business  Total: 5480 Students in WS15/16 774 Administration 14% 1.141 21% Mechanical Engineering  Faculties: 1.032 19%  Business Administration  Computer Science  Electrical and industrial engineering Social Work  Mechanical Engineering Electrical and 855 Industrial 16%  Interdisciplinary studies Engineering 1.616 30% WS14/15 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 1

  3. Why vertical dynamics will have a revival.  The increasing automatisation of driving gives all the passengers the posibility to relax or work in the car  Sensibility concerning primary and secondary ride comfort will increase  Vertical dynamics will even get more important  Thesis: „ For best benefit of fully autonomous driving controlled vertical dynamic systems will be necessary “ 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 2

  4. Overview of controlled vertical dynamic systems. Functional Aspects Hight Control Body Movement Dynamic Tire Load Comfort / Comfort Driving Safety Driving Safety / Energy Consumption 20.09.2016 Prof. Dr. M. Jautze, University of Applied Sciences Landshut 3

  5. Overview of controlled vertical dynamic systems. Functional Aspects Systems Body Movement Dynamic Tire Load Hight Control Variable Damper, Variable Damper, Levelling Systems Full Active Systems Full Active Systems Comfort / Comfort Driving Safety Driving Safety / Energy Consumption 20.09.2016 Prof. Dr. M. Jautze, University of Applied Sciences Landshut 4

  6. Why is a HIL test bench for vertical dynamics needed ? Quarter car model body mass t z b Stiffness of the top mount Coil spring Control strategy: Double skyhook damping (Variable) damper or       F k z k z act sky , b b sky , a a actuator unsprung mass t Stiffness z a v of the tire Damping of the tire t z r P dyn 20.09.2016 Prof. Dr. M. Jautze, University of Applied Sciences Landshut 5

  7. Why is a HIL test bench for vertical dynamics needed ?  Damper, spring and top mount have a significant influence on comfort  Accurate Modeling of these components is quite difficult  In durability tests with realtime road profiles the component behavior has a massive effect (‘feedback’)  Solution: Combination of realtime simulation model with vertical dynamic test rig 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 6

  8. HIL Test Rig: Concept. HIL User.DampsFR Car.DampFR.Frc_ext RoadBox 4U ACDC • F19P Core 2, Duo Single Board Computer • M36N-01 - Analog Inputs Vertical Dynamic Test Rig • M62N - Analog Outputs • Machine Frame Schenk PC400N • Inova EU3000-RTC • Hydropulse Cylinder 50 kN • Cylinder Travel 250 mm 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 7

  9. HIL Test Rig: Concept – Variants of test samples.  Damper with rebound spring  Damper with rebound, bound spring, spring coil or air spring including top mount  Depending on concept: Airspring Stand Alone 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 8

  10. Hydropulse Test Rig: Component Testing. Soft Damper Characteristic Kraft-Weg-Diagramm Dämpfertest mit 0 A Bestromung, Geschwindigkeiten: „VDA -Testing “ 1 0,705985906 0,5 0,228198276 0,139384916 0,06939029 0 0,000328554 Kraft-Weg-Diagramm Dämpfertest mit 0,9 A Bestromung -25 -20 -15 -10 -5 0 5 10 15 20 25 Middle Damper Characteristic -0,117706354 2 Kraft in [N] -0,19217452 Datenreihen1 -0,297433398 -0,334933813 -0,417868783 1,636333949 -0,5 1,5 -0,591515936 -0,674734314 -0,762331814 1,17047145 1,024159055 1 -1 0,769180004 -1,206926246 0,5 -1,5 0,35784321 Weg in [mm] Kraft in [N] Component Testing 0 -0,038619429 Datenreihen1 -25 -20 -15 -10 -5 0 5 10 15 20 25 -0,172182606 -0,31965612 -0,406601707 -0,5 -0,725247438 Kraft-Weg-Diagramm Dämpfertest mit 1,8 A Bestromung Hard Damper Characteristic 3 -1 -1,111866531 2,5 -1,254493845 2,364837184 -1,371042344 -1,5 2 1,757732544 -1,754079272 1,598800689 1,5 1,41163516 -2 Weg in [mm] 1,180005879 1 1,015354335 0,5 0,525693683 Kraft in [N] Datenreihen1 0 -25 -20 -15 -10 -5 0 5 10 15 20 25 -0,5 -0,527320458 -0,865353527 -1 -1,070076005 -1,336204225 -1,5 -1,485305828 -1,619214191 -2 -2,174685891 -2,5 Weg in [mm] 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 9

  11. Hydropulse Test Rig: Component Testing. • VDA Test • Dynamic behavior „Real Part“ „Simulation Model“  Validated Simulation Model (Matlab Simulink) for integration in CarMaker 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 10

  12. Realtime Vehicle Simulation Model: Test Equipment. Test car: BMW 730d Additional sensors: Acceleration sensors, height sensors and sensor cluster in the center of gravity Measurement System: dSpace micro autobox Masterthesis: T. Aman, „ Konzipierung und Validierung eines fahrdynamischen Messsystems durch Referenzmessung als Basis für ein vertikaldynamisches Regelsystem und Aufbau eines Simulationsmodelles “, 2015. 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 11

  13. Realtime Vehicle Simulation Model: Validation (1). Measurement with real car Comparision of relevant values  Good correlation. Simulation with CarMaker 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 12

  14. Realtime Vehicle Simulation Model: Validation (2). Wheel travel FR Beam left and right side Vertical acceleration unsprung mass FR Masterthesis: H. Hornberger, „Konzipierung, Umsetzung und Validierung der Funktionslogik eines vertikaldynamischen Fahrwerksy ste m“, 2016. 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 13

  15. Realtime Vehicle Simulation Model: Validation (3). Wheel travel RR Beam left and right side Vertical acceleration unsprung mass RR Masterthesis: H. Hornberger, „Konzipierung, Umsetzung und Validierung der Funktionslogik eines vertikaldynamischen Fahrwerksy ste m“, 2016. 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 14

  16. Realtime Vehicle Simulation Model: Validation (4). Vertical acceleration in center of gravity Beam left and right side Pitch-Rate Masterthesis: H. Hornberger, „Konzipierung, Umsetzung und Validierung der Funktionslogik eines vertikaldynamischen Fahrwerksy ste m“, 2016. 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 15

  17. Realtime Vehicle Simulation Model: Validation (5). Vertical acceleration in center of gravity Beam only right side Roll-Rate Masterthesis: H. Hornberger, „Konzipierung, Umsetzung und Validierung der Funktionslogik eines vertikaldynamischen Fahrwerksy ste m“, 2016. 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 16

  18. HIL Test Rig: Beam, single sided (right). 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 17

  19. HIL Test Rig: Beam, single sided (right). 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 18

  20. Vertical Dynamic Test Rig for Integration in a Realtime Vehicle Simulation Model. Conclusion.  (Advanced) Vertical Dynamics will get a revival.  Realised Concept of a vertical dynamics test rig , suitable for HIL application and component measurement.  Good accuracy of the HIL vehicle model and measurements with the real car concerning vertical dynamic (damper with fixed damping curve, obstacle beam).  HIL can be used for functional development and endurance strength. 20.09.2016 Prof. Dr. M. Jautze, Hochschule Landshut 19

  21. Hochschule Landshut Prof. Dr. M. Jautze Am Lurzenhof 1 ∙ D -84036 Landshut Tel.: +49 871 506-267 marcus.jautze@haw-landshut.de www.haw-landshut.de

Recommend


More recommend