Five-dimensional gauge theory via holography Eric D’Hoker Mani L. Bhaumik Institute for Theoretical Physics Department of Physics and Astronomy, UCLA Galileo Galilei Institute for Theoretical Physics, Arcetri, Florence Supersymmetric Quantum Field Theories in the Non-Perturbative Regime May 2018
Eric D’Hoker Five-dimensional gauge theory via holography Overview • Dynamics of branes in M-theory and Type II suggest – Existence of five-dimensional superconformal fixed points with 16 supercharges possessing Coulomb branch and Higgs branch deformations – Despite the lack of perturbative renormalizability of Yang-Mills theory • Prior approaches – Field theory: approach from the Coulomb branch – D4/D8 branes in massive Type IIA, D5/NS5 brane webs in Type IIB – Superconformal phase difficult to access in either approach • Holographic approach to the super-conformal phase – Type IIB supergravity on AdS 6 × S 2 warped over Riemann surface Σ – Obtain exact local solutions to the BPS equations for 16 supersymmetries – Construct global solutions – Many open problems
Eric D’Hoker Five-dimensional gauge theory via holography Bibliography Key earlier work • Five-dimensional SUSY Field Theories, Non-trivial Fixed Points, and String Dynamics , N. Seiberg, hepth/9608111; • Five-Dimensional Supersymmetric Gauge Theories and Degenerations of Calabi-Yau Spaces , K. Intriligator, D.R. Morrison, N. Seiberg, hepth/9702198; • Branes, Superpotentials and Superconformal Fixed Points , O. Aharony, A. Hanany, hepth/9704170; • The D4-D8 Brane System and Five Dimensional Fixed Points , A. Brandhuber, Y. Oz, arXiv:9905148. Our papers • Warped AdS 6 × S 2 in Type IIB supergravity I: Local Solutions , ED, Michael Gutperle, Andreas Karch, Christoph F. Uhlemann, arXiv:1606.01254; • Holographic duals for five-dimensional superconformal quantum field theories , ED, Michael Gutperle, Christoph F. Uhlemann, arXiv:1611.09411; • Warped AdS 6 × S 2 in Type IIB supergravity II: Global Solutions and five-brane webs , ED, Michael Gutperle, Christoph F. Uhlemann, arXiv:1703.08186; • Warped AdS 6 × S 2 in Type IIB supergravity III: Global Solutions with seven-branes , ED, Michael Gutperle, Christoph F. Uhlemann, arXiv:1706.00433;
Eric D’Hoker Five-dimensional gauge theory via holography Five-dimensional supersymmetry • Minimal Poincar´ e supersymmetry in five dimensions – has 2 supersymmetry spinor generators = 8 real supersymmetries – and thus SU (2) R symmetry • Supermultiplets – gauge multiplet A = ( A µ , λ α , φ ) with φ a real scalar; – hypermultiplet H = ( ψ, H a ) with H a four real scalars; • Super-conformal symmetry – the conformal algebra in d ≥ 3 dimensions is SO (2 , d ) – the superconformal algebra contains SO (2 , d ) , the R-symmetry algebra, and fermionic generators which are spinors under SO (2 , d ) d = 3 OSp (2 m | 4) SO (2 , 3) = Sp (4 , R ) , m = 1 , 2 , 3 , 4 d = 4 SU (2 , 2 | m ) SO (2 , 4) = SU (2 , 2) , m = 1 , 2 , 3 , 4 d = 5 F (4) SO (2 , 5) ⊕ SU (2) max bosonic subalgebra OSp (8 ∗ | 2 m ) SO (2 , 6) = SO (8 ∗ ) , m = 1 , 2 d = 6 – maximal 32 supersymmetries in d = 3 , 4 , 6 but only 16 in d = 5 .
Eric D’Hoker Five-dimensional gauge theory via holography Five-dimensional supersymmetric gauge theory • Five-dimensional gauge theory (e.g. SU ( N ) gauge group) c L ∼ g − 2 tr( F 2 ) + 24 π 2 tr( A ∧ F ∧ F + · · · ) – [ g − 2 ] = mass and hence perturbatively non-renormalizable; – c quantized in integers by gauge invariance; • Poincar´ e supersymmetric theories with gauge and hypermultiplets, – Coulomb branch: gauge scalars acquire vevs � φ � � = 0 – Higgs branch: hypermultiplet scalars acquire vevs � H � � = 0 • Reach super-conformal fixed point via Coulomb branch (Seiberg, 1996) – generically SU ( N ) → U (1) N − 1 / Weyl – U (1) gauge supermultiplets A i = ( A i µ , λ i α , φ i ) i A i = 0 with i = 1 , · · · , N, �
Eric D’Hoker Five-dimensional gauge theory via holography The pre-potential • Dynamics in the Coulomb branch is governed by a pre-potential F ( A i ) – bosonic part of the effective Lagrangian dictated by supersymmetry � � � � F i F j + ∂φ i ∂φ j A i ∧ F j ∧ F k + · · · � � L ∼ ∂ i ∂ j F ( φ ) + ∂ i ∂ j ∂ k F ( φ ) i,j i,j,k – Gauge invariance A i → A i + dθ i requires ∂ 3 F to be constant. – Hence the pre-potential is at most cubic in φ i , A i . • Exact pre-potential for SU ( N ) with N f hypermultiplets in the N of SU ( N ) Nf 1 ( φ i ) 3 + 1 | φ i − φ j | 3 − 1 i + c φ 2 | φ i + m f | 3 � � � � � F ( φ ) = 2 g 2 6 6 12 0 i i i<j f =1 i – the bare coupling g 2 0 is a UV cutoff, m f are hypermultiplet masses.
Eric D’Hoker Five-dimensional gauge theory via holography Dynamics on the Coulomb branch • Regularity requires the gauge kinetic energy to have positive sign, – ∂ i ∂ j F must be positive for φ ∈ R N − 1 / Weyl • For SU (2) gauge group φ = φ 1 = − φ 2 , and N f hypermultiplets, N f g 2 ( φ ) = 1 1 + 2 | φ | − 1 1 � g 2 ( φ ) = ∂ 2 F ( φ ) | φ − m f | g 2 4 0 f =1 • Regularity g 2 ( φ ) > 0 requires N f ≤ 7 . – g 2 0 → ∞ leaves UV finite theory on the Coulomb branch. – Super-conformal fixed point as φ, m f → 0 is strongly coupled. – Exceptional global symmetries E 8 , E 7 , E 6 , SO (10) , SU (5) , · · ·
Eric D’Hoker Five-dimensional gauge theory via holography Supersymmetric field theories from branes • Standard cases have maximal supersymmetry – 16 Poincar´ e supercharges – in the near-horizon limit enhanced to 32 conformal supercharges dim theory brane near-horizon asymptotic symmetry AdS 4 × S 7 d=3 M-theory M2 SO (2 , 3) × SO (8) AdS 5 × S 5 d=4 Type IIB D3 SO (2 , 4) × SO (6) AdS 7 × S 4 d=6 M-theory M5 SO (2 , 6) × SO (5) • For d = 5 , superconformal F (4) is unique and has 16 supercharges (8 Poincar´ e) • Brane approaches to five-dimensional gauge theory – D4 probe brane and parallel D8 branes in massive Type IIA (Seiberg, 1996) and (Brandhuber, Oz 1999) – D5 intersecting NS5 branes in Type IIB (Aharony, Hanany 1997) • M-theory on 6-dim Calabi-Yau approach to five-dimensional fixed points (Morrison, Seiberg, 1996)
Eric D’Hoker Five-dimensional gauge theory via holography Five-branes in Type IIB string theory • D5 and NS5 branes intersecting along a five-dimensional space-time branes 0 1 2 3 4 5 6 7 8 9 D5 × × × × × × NS5 × × × × × × – Poincar´ e ISO (1 , 4) invariant along 01234 parallel directions – SO (3) invariant along 789-transverse directions – has 8 Poincar´ e supersymmetries • D5 and NS5 transform under SL (2 , Z ) duality of Type IIB (Schwarz 1995) – ( p, q ) five-branes with p, q ∈ Z – x 5 labels positions of NS5 branes, – x 6 labels positions of D5 branes (0 , 1) x 6 NS5 (1 , 1) (1 , 0) D5 x 5
Eric D’Hoker Five-dimensional gauge theory via holography ( p, q ) brane webs • ( p, q ) -brane intersections conserve p, q -charges due to SL (2 , Z ) symmetry (1 , 1) x 6 (1 , 0) x 5 (0 , 1) • N parallel D5 branes suspended between two semi-infinite branes – non-coincident: U (1) N − 1 gauge theory plus massive W -bosons – coincident: SU ( N ) gauge theory – superconformal: web collapses to a single point ( p 1 , q 1) ( p 1 + N, q 1) N D 5 N D 5 · · · ( p 2 , q 2) ( p 2 − N, q 2) superconformal non-coincident coincident
Eric D’Hoker Five-dimensional gauge theory via holography Near-horizon limit • Take the near-horizon limit of a ( p, q ) web configuration – with a large number N of coincident D5 branes branes 0 1 2 3 4 5 6 7 8 9 D5 × × × × × × NS5 × × × × × × – radial coordinate in 789 direction combines with 01234 to AdS 6 – remaining angular directions of 789 give S 2 – with combined isometries SO (2 , 5) × SO (3) • Total space-time geometry AdS 6 × S 2 × Σ – where AdS 6 × S 2 is warped over the two-dimensional surface Σ – Σ contains the structure of the web in the near-horizon limit • Our approach: obtain the Type IIB supergravity solutions directly – several earlier attempts (with unphysical singularities) Lozano et al, 2012; Apruzzi et al, 2014; Kim et al 2015; O’Colgain et al 2015
Eric D’Hoker Five-dimensional gauge theory via holography Type IIB supergravity • The fields of Type IIB sugergravity are g MN metric B axion / dilaton P, Q ∼ dB (contains χ, Φ) C 2 complex 2-form G (contains NSNS , RR) C 4 real 4-form F 5 ⋆F 5 = F 5 ψ M gravitino Weyl spinor λ dilatino Weyl spinor • Type IIB supergravity is invariant under global SL (2 , R ) = SU (1 , 1) – Einstein-frame metric and F 5 are invariant, – dilaton/axion B in coset SU (1 , 1) /U (1) , complex C 2 transforms linearly, B → uB + v | u | 2 − | v | 2 = 1 C 2 → uC 2 + v ¯ C 2 ¯ vB + ¯ u • Bianchi identities and field equations.
Recommend
More recommend