First Steps to the Optimization of Undulator Parameters for 125 GeV Drive Beam by Manuel Formela 04.09.2018 1
Overview β’ Introducing formulas for: β’ Power absorped by the undulator vessel in form of photons π π€ππ‘π‘ππ β’ Number of produced π + by π β π + - pair production in a Ti-6% Al-4%V target β’ Undulator scheme used in the RDR β’ Reproducing values for already calculated π π€ππ‘π‘ππ for the RDR set-up β’ Calculations of π π + for various parameter values for πΏ, π, π π£ , π βππππ β’ Dropping some parameter combinations due to restraints in π π + and π π€ππ‘π‘ππ β’ Outlook into possible future 04.09.2018 2
Radiated Synchrotron Energy Spectral Density per Solid Angle per Electron Formulas taken from: Kincaid, Brian M. "A shortβperiod helical wiggler as an improved source of synchrotron radiation." Journal of Applied Physics 48.7 (1977): 2684-2691. First approximations: Photon frequency - relativistic ( πΏ β« 1 ) 2 = π 2 π(π) π 2 π 2 +β ππ π’β ΰ· π Τ¦ π π’ ππ½(π) - far field ( π β« π πΏ ) π Γ Τ¦ π = 14π 3 π 0 π ΰΆ± π Γ ΰ· ΰ· πΎ π ππ’ π β β 0 ) πΞ© πΞ©ππ - pointlike charge ( π ββ For helical trajectory: Opening angle π sin 2 π π£ π β π 1 β π 2 e 2 π 2 πΏ 2 ππ½(π) β²2 π¦ 1 + πΏπ πΏ β π 2 π¦ 1 = 2 πΏ 2 ΰ· πΎ π πΎ π 2 4π 3 π 0 ππ π£ πΞ© π¦ 1 π π 1 β π π=1 2nd approximations: - small (radiation) angle ( π βͺ 1 β cos π β 1, sin π β π) ; this is reasonable, because the radiation cone has according to theory an Opening angle of π β 1/πΏ - Many undulator periods ( π π£ β³ 100 ) - reasonably small undulator parameter ( πΏ β² 1 β πΏ/πΏ βͺ 1 ) 04.09.2018 3
αΆ π sin 2 π π£ π β π 1 β π 2 e 2 π 2 πΏ 2 ππ½(π) β²2 π¦ 1 + πΏπ πΏ β π 2 π¦ 1 = 2 πΏ 2 ΰ· πΎ π πΎ π 2 4π 3 π 0 ππ π£ πΞ© π¦ 1 π π 1 β π π=1 Approximation sin 2 πππ§ /π§ 2 β Nππ(π§) : β β ππ½(π) 2 N u e 2 π π£ πΏ 2 8πΏ 4 ππ β²2 π¦ π + πΏπ πΏ β π Radiated energy π 2 πΎ π 2 π¦ π 1. πΞ© = ΰΆ± ππ β 4ππ 0 π 1 + πΏ 2 + πΏ 2 π 2 3 ΰ· πΎ π per solid angle πΞ© π¦ π 0 π=1 β 2 πΞ© β N u e 2 πΏ 2 π Radiated energy 2. ππ ππ = ΰΆ± ππ½(π) β²2 π§ π + π½ π πΏ β π π 2 πΎ π 2 π§ π 2 ) ΰ· πΎ π πΌ(π½ π spectral density πΞ© π 0 π π§ π π=1 Numerical integration leads to: π π π β ΰΆ± ππ sin π ππ πΞ© πΞ© = 2π αΆ π π β ΰΆ± 1. π π€ππ‘π‘ππ = ππ ππ Power deposited in the undulator vessel π 1 β 1 π π + = 1 ππ ππ (1 β π βπππ(π) )ππ β ΰΆ± 2. Positron number produced by all photons π 0 Target thickness Cross section for π β π + -pair production by photon of target material Target density 04.09.2018 4
Undulator set up (RDR, BCD) Taken from: Scott, Duncan J. "An Investigation into the Design of the Helical Undulator for the International Linear Collider Positron Sourceβ Undulator aperture = 5.85 mm 20 of such half-cell will be arranged in a row to form the full undulator (with 240 m of total magnetic length) 04.09.2018 5
Test: Power deposited in the undulator vessel - Dashed lines: single undulator piece - Solid lines: whole undulator scheme - Blue: RDR parameters - Red: BCD parameters Current calculations In good agreement Duncan J Scottβs calculations 04.09.2018 6
Undulator mask (consisting of collimators with aperture of 4.4 mm) for preventing heating of the vessel due to photon absorption. Undulator aperture = 5.85 mm The limit of maximal absorped power is 1 Wm β1 (according to Duncan J Scott, who in turn names the source to be private communication with T Bradshaw) 04.09.2018 7
Current calculations In good agreement Duncan J Scottβs calculations 04.09.2018 8
Current calculations Peridocity and peak values are in good agreement; Disagreement in dip values and local shape of the graph In good agreement Duncan J Scottβs calculations 04.09.2018 9
04.09.2018 10
Examined parameter combination for the positron number πΏ = 0.65, 0.9, 1.15, π π£ = 8.5, 10, 11.5 mm , π π£ = 1.75, 2 m , π βππππ = 18, 20, 22 04.09.2018 11
04.09.2018 12
πΏ = 1.15, π = 8.5 mm, π π£ = 2m, π βππππ = 22 βΌ 264 m magnetic length 04.09.2018 13
Possible future improvements β’ Drop a single or multiple approximations ( πΏ β« 1 , π βͺ 1 , π π£ β³ 100 , π β β 0 , sin 2 πππ§ /π§ 2 β Nππ(π§) , etc.) πΏ β² 1 , π β« π πΏ , π β’ Correcting possible flaws in the undulator mask considerations β’ For π π + : Numerical integration over a solid angle, that only covers the target instead of the full π = 0 β π β 2 πΞ© β N u e 2 πΏ 2 π ππ ππ = ΰΆ± ππ½(π) β²2 π§ π + π½ π πΏ β π π 2 πΎ π 2 π§ π 2 ) ΰ· πΎ π πΌ(π½ π πΞ© π 0 π π§ π π=1 β’ Examining more intermediate parameter values between the upper and lower limits β’ Adding more criteria for the optimazation besides lower limit for π π + and upper limit for π π€ππ‘π‘ππ 04.09.2018 14
Thank you for your attention 04.09.2018 15
Recommend
More recommend