first steps
play

First Steps to the Optimization of Undulator Parameters for 125 - PowerPoint PPT Presentation

First Steps to the Optimization of Undulator Parameters for 125 GeV Drive Beam by Manuel Formela 04.09.2018 1 Overview Introducing formulas for: Power absorped by the undulator vessel in form of photons


  1. First Steps to the Optimization of Undulator Parameters for 125 GeV Drive Beam by Manuel Formela 04.09.2018 1

  2. Overview β€’ Introducing formulas for: β€’ Power absorped by the undulator vessel in form of photons 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š β€’ Number of produced 𝑓 + by 𝑓 βˆ’ 𝑓 + - pair production in a Ti-6% Al-4%V target β€’ Undulator scheme used in the RDR β€’ Reproducing values for already calculated 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š for the RDR set-up β€’ Calculations of 𝑂 𝑓 + for various parameter values for 𝐿, πœ‡, π‘š 𝑣 , 𝑂 β„Žπ‘‘π‘“π‘šπ‘š β€’ Dropping some parameter combinations due to restraints in 𝑂 𝑓 + and 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š β€’ Outlook into possible future 04.09.2018 2

  3. Radiated Synchrotron Energy Spectral Density per Solid Angle per Electron Formulas taken from: Kincaid, Brian M. "A short‐period helical wiggler as an improved source of synchrotron radiation." Journal of Applied Physics 48.7 (1977): 2684-2691. First approximations: Photon frequency - relativistic ( 𝛿 ≫ 1 ) 2 = 𝑒 2 𝑋(πœ•) 𝑓 2 πœ• 2 +∞ π‘—πœ• π‘’βˆ’ ො π‘œ Τ¦ 𝑠 𝑒 𝑒𝐽(πœ•) - far field ( 𝑆 ≫ πœ‡ 𝛿 ) π‘œ Γ— Τ¦ 𝑑 = 14𝜌 3 πœ— 0 𝑑 ΰΆ± π‘œ Γ— ො ො 𝛾 𝑓 𝑒𝑒 𝑓 βˆ’ β†’ 0 ) 𝑒Ω π‘’Ξ©π‘’πœ• - pointlike charge ( π‘Š βˆ’βˆž For helical trajectory: Opening angle πœ• sin 2 𝑂 𝑣 𝜌 ∞ πœ• 1 βˆ’ π‘œ 2 e 2 πœ• 2 𝐿 2 𝑒𝐽(πœ•) β€²2 𝑦 1 + π›Ώπœ„ 𝐿 βˆ’ π‘œ 2 𝑦 1 = 2 𝛿 2 ෍ 𝐾 π‘œ 𝐾 π‘œ 2 4𝜌 3 πœ— 0 π‘‘πœ• 𝑣 𝑒Ω 𝑦 1 πœ• πœ• 1 βˆ’ π‘œ π‘œ=1 2nd approximations: - small (radiation) angle ( πœ„ β‰ͺ 1 β‡’ cos πœ„ β‰ˆ 1, sin πœ„ β‰ˆ πœ„) ; this is reasonable, because the radiation cone has according to theory an Opening angle of πœ„ β‰ˆ 1/𝛿 - Many undulator periods ( 𝑂 𝑣 ≳ 100 ) - reasonably small undulator parameter ( 𝐿 ≲ 1 β†’ 𝐿/𝛿 β‰ͺ 1 ) 04.09.2018 3

  4. ሢ πœ• sin 2 𝑂 𝑣 𝜌 ∞ πœ• 1 βˆ’ π‘œ 2 e 2 πœ• 2 𝐿 2 𝑒𝐽(πœ•) β€²2 𝑦 1 + π›Ώπœ„ 𝐿 βˆ’ π‘œ 2 𝑦 1 = 2 𝛿 2 ෍ 𝐾 π‘œ 𝐾 π‘œ 2 4𝜌 3 πœ— 0 π‘‘πœ• 𝑣 𝑒Ω 𝑦 1 πœ• πœ• 1 βˆ’ π‘œ π‘œ=1 Approximation sin 2 π‘‚πœŒπ‘§ /𝑧 2 β†’ NπœŒπœ€(𝑧) : ∞ ∞ 𝑒𝐽(πœ•) 2 N u e 2 πœ• 𝑣 𝐿 2 8𝛿 4 𝑒𝑋 β€²2 𝑦 π‘œ + π›Ώπœ„ 𝐿 βˆ’ π‘œ Radiated energy π‘œ 2 𝐾 π‘œ 2 𝑦 π‘œ 1. 𝑒Ω = ΰΆ± π‘’πœ• β‰ˆ 4πœŒπœ— 0 𝑑 1 + 𝐿 2 + 𝛿 2 πœ„ 2 3 ෍ 𝐾 π‘œ per solid angle 𝑒Ω 𝑦 π‘œ 0 π‘œ=1 ∞ 2 𝑒Ω β‰ˆ N u e 2 𝐿 2 𝑠 Radiated energy 2. 𝑒𝑋 π‘’πœ• = ΰΆ± 𝑒𝐽(πœ•) β€²2 𝑧 π‘œ + 𝛽 π‘œ 𝐿 βˆ’ π‘œ π‘œ 2 𝐾 π‘œ 2 𝑧 π‘œ 2 ) ෍ 𝐾 π‘œ 𝐼(𝛽 π‘œ spectral density 𝑒Ω πœ— 0 𝑑 𝑧 π‘œ π‘œ=1 Numerical integration leads to: 𝜌 𝑂 𝑓 βˆ’ ΰΆ± 𝑒𝑋 sin πœ„ 𝑒𝑋 𝑒Ω 𝑒Ω = 2𝜌 ሢ 𝑂 𝑓 βˆ’ ΰΆ± 1. 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š = π‘’πœ„ π‘’πœ„ Power deposited in the undulator vessel πœ„ 1 ∞ 1 𝑂 𝑓 + = 1 𝑒𝑋 π‘’πœ• (1 βˆ’ 𝑓 βˆ’π‘’πœπœ(πœ•) )π‘’πœ• ℏ ΰΆ± 2. Positron number produced by all photons πœ• 0 Target thickness Cross section for 𝑓 βˆ’ 𝑓 + -pair production by photon of target material Target density 04.09.2018 4

  5. Undulator set up (RDR, BCD) Taken from: Scott, Duncan J. "An Investigation into the Design of the Helical Undulator for the International Linear Collider Positron Sourceβ€œ Undulator aperture = 5.85 mm 20 of such half-cell will be arranged in a row to form the full undulator (with 240 m of total magnetic length) 04.09.2018 5

  6. Test: Power deposited in the undulator vessel - Dashed lines: single undulator piece - Solid lines: whole undulator scheme - Blue: RDR parameters - Red: BCD parameters Current calculations In good agreement Duncan J Scottβ€˜s calculations 04.09.2018 6

  7. Undulator mask (consisting of collimators with aperture of 4.4 mm) for preventing heating of the vessel due to photon absorption. Undulator aperture = 5.85 mm The limit of maximal absorped power is 1 Wm βˆ’1 (according to Duncan J Scott, who in turn names the source to be private communication with T Bradshaw) 04.09.2018 7

  8. Current calculations In good agreement Duncan J Scottβ€˜s calculations 04.09.2018 8

  9. Current calculations Peridocity and peak values are in good agreement; Disagreement in dip values and local shape of the graph In good agreement Duncan J Scottβ€˜s calculations 04.09.2018 9

  10. 04.09.2018 10

  11. Examined parameter combination for the positron number 𝐿 = 0.65, 0.9, 1.15, πœ‡ 𝑣 = 8.5, 10, 11.5 mm , π‘š 𝑣 = 1.75, 2 m , 𝑂 β„Žπ‘‘π‘“π‘šπ‘š = 18, 20, 22 04.09.2018 11

  12. 04.09.2018 12

  13. 𝐿 = 1.15, πœ‡ = 8.5 mm, π‘š 𝑣 = 2m, 𝑂 β„Žπ‘‘π‘“π‘šπ‘š = 22 ∼ 264 m magnetic length 04.09.2018 13

  14. Possible future improvements β€’ Drop a single or multiple approximations ( 𝛿 ≫ 1 , πœ„ β‰ͺ 1 , 𝑂 𝑣 ≳ 100 , 𝑓 βˆ’ β†’ 0 , sin 2 π‘‚πœŒπ‘§ /𝑧 2 β†’ NπœŒπœ€(𝑧) , etc.) 𝐿 ≲ 1 , 𝑆 ≫ πœ‡ 𝛿 , π‘Š β€’ Correcting possible flaws in the undulator mask considerations β€’ For 𝑂 𝑓 + : Numerical integration over a solid angle, that only covers the target instead of the full πœ„ = 0 βˆ’ 𝜌 ∞ 2 𝑒Ω β‰ˆ N u e 2 𝐿 2 𝑠 𝑒𝑋 π‘’πœ• = ΰΆ± 𝑒𝐽(πœ•) β€²2 𝑧 π‘œ + 𝛽 π‘œ 𝐿 βˆ’ π‘œ π‘œ 2 𝐾 π‘œ 2 𝑧 π‘œ 2 ) ෍ 𝐾 π‘œ 𝐼(𝛽 π‘œ 𝑒Ω πœ— 0 𝑑 𝑧 π‘œ π‘œ=1 β€’ Examining more intermediate parameter values between the upper and lower limits β€’ Adding more criteria for the optimazation besides lower limit for 𝑂 𝑓 + and upper limit for 𝑄 π‘€π‘“π‘‘π‘‘π‘“π‘š 04.09.2018 14

  15. Thank you for your attention 04.09.2018 15

Recommend


More recommend