Final Presentation CPG and Tegotae based Locomotion Control of Quadrupedal Modular Robots Author: Rui Vasconcelos Supervisors: Simon Hauser Florin Dzeladini Prof. Auke Ijspeert Prof. Paulo Oliveira 1
Control Problem Is there a general approach to control arbitrary modular robots? 2
Control Problem Is there a general approach to control quadrupedal arbitrary modular robots? Simplifications: 1. 8 degrees of freedom 2. Symmetric configuration 3. Central body 3
Bioinspiration [Ijspeert A.] 4
Methods
Base Morphology Simulation Hardware πΆ π₯π = 2 Kg πΆ π₯π = 1.4 Kg Simplifications: 1. Planar Limbs 2. Specialized foot 6
Base Morphology Simulation (π¦, π§, π¨) (Ξ¦, Ξ, Ξ¨) π π ππ π π π (πΊ π¦ , πΊ π§ , πΊ π¨ ) 7
Base Morphology Hardware 18V 18V 12V RS-485 TTL 8
Base Morphology Joint Reference Hardware Joint Position Current New IMU 3D force 9
Step Trajectory Stance phase Swing phase Parameters: π πππ¦ π πππ¦ π 1 π 1 1. π πππ¦ π 2 2. β π‘π’ π 2 3. β π‘π₯ π 3 π 3 π 1 π 1 π 4 π 2 β π‘π₯ β π‘π’ 10
Control Approaches Open Loop CPG Tegotae π 4 π = 2 π = 1 π = 2 π = 1 π 3 π 1 π π’ π π π 2 Parameters: Parameters : 1. π π = 4 π = 3 π = 4 π = 3 1. π 2. ππ 2. π 3. π ππ = βπ ππ 11
Control Approaches Open Loop CPG Tegotae π 4 Binary Tegotae π = 2 π = 1 π 3 π 1 π π’ π π π 2 Parameters: 1. π π = 4 π = 3 2. ππ 3. π ππ = βπ ππ 12
Goals
Thesis Goals Open Loop CPG Tegotae 1. Trajectory 1. Trajectory 2. Effect of π 2. Duty factor 3. Scaled by Steady frequency? State Energy 4. Binary Tegotae? Speed Convergence Stability 14
Results
Control Approaches Open Loop CPG Tegotae π 4 Binary Tegotae π = 2 π = 1 π 3 π 1 π π’ π π π 2 Parameters: 1. π π = 4 π = 3 2. ππ 3. π ππ = βπ ππ 16
Particle Swarm Optimization Open Loop CPG Maximize : > β πππ Subject to: Validation on hardware 17
Particle Swarm Optimization Open Loop CPG Maximize : Subject to: 18
Particle Swarm Optimization Open Loop CPG Maximize Trot π€ π [π β π‘ β1 ] : 0.25 0.5 0.75 1 BL 19
Particle Swarm Optimization Open Loop CPG Rotary Gallop Maximize Trot π€ π [π β π‘ β1 ] : 0.25 0.5 0.75 1 BL 20
Particle Swarm Optimization Bound Open Loop CPG Rotary Gallop Maximize Trot π€ π [π β π‘ β1 ] : 0.25 0.5 0.75 1 BL 21
Particle Swarm Optimization Bound Open Loop CPG Rotary Gallop Maximize Validated on hardware Trot π€ π [π β π‘ β1 ] Trot 0 : 0.25 0.5 0.75 1 β₯ 0.5 BL Imposed Trot Validation on hardware π = 0.25 πΌπ¨ , π πππ¦ = 0.3 π ππ , β π‘π₯ = 15 ππ, β π‘π’ = 0 ππ 22
Steady State Systematic Search: Trajectories Open Loop CPG Simulation π = 0.25 πΌπ¨ 23
Steady State Systematic Search: Trajectories Open Loop CPG Hardware π = 0.25 πΌπ¨ ππ = 0.5 24
Control Approaches Open Loop CPG Tegotae π 4 Binary Tegotae π = 2 π = 1 π 3 π 1 π π’ π π π 2 Parameters: 1. π π = 4 π = 3 2. ππ 1. Convergence 3. π ππ = βπ ππ 2. Steady State 25
1. Convergence Tegotae Trot π = π. ππ Hardware π 0 = [0,0,0,0] 26 π = 0.25 πΌπ¨ , π πππ¦ = 0.3 π ππ , β π‘π₯ = 15 ππ, β π‘π’ = 0 ππ
1. Convergence Binary Tegotae π π = π. π 27
1. Convergence Binary Tegotae 28
2. Steady State Tegotae 1. Trajectory Simulation 2. Effect of π 29
2. Steady State Tegotae 1. Trajectory Simulation 2. Effect of π 3. Scaled by frequency? 30
2. Steady State Tegotae 1. Trajectory Simulation 2. Effect of π 3. Scaled by frequency? Best Best 15 Energy 15 Efficiency Speed 31
2. Steady State Tegotae Hardware π = 0.25 πΌπ¨ , π πππ¦ = 0.3 π ππ , β π‘π₯ = 15 ππ, β π‘π’ = 0 ππ 32
2. Steady State Tegotae Hardware π = π π = π. π 33
2. Steady State Tegotae Hardware π = π π = π. π Step cycle 34
2. Steady State Tegotae Hardware π = π π = π. π 35
2. Steady State Tegotae Hardware π = π. π π = π 36
2. Steady State Binary Tegotae π π = π. π π π = π. π 37
Conclusions
Conclusions Open Loop CPG Tegotae π(π’) Convergence: π Particle Swarm Optimizations: Trot Bound Steady π Fast + Efficient π Rotary Gallop state: Stable β π‘π’ = 0 Trot π€ π [π β π‘ β1 ] 0.25 0.5 0.75 1 BL Binary Tegotae Systematic Search: β π‘π₯ β 10,20 ππ 1. Slower convergence π πππ¦ Fast + H: 2. Less efficient steady state Efficient π πππ¦ Slow + S: Simulation VS Hardware Efficient 39
Future Work Tegotae 1. More experiments! 2. Rough Terrain 3. Compliance Crawling? 4. Mophology changes 40
Future Work Tegotae 1. More experiments! 2. Rough Terrain 3. Compliance Ground Reaction Force [N] 4. Mophology changes 41
Acknowledgements 42
Final Presentation CPG and Tegotae based Locomotion Control of Quadrupedal Modular Robots Author: Rui Vasconcelos Supervisors: Simon Hauser Florin Dzeladini Prof. Auke Ijspeert Prof. Paulo Oliveira 43
Appendix: Cat Gallop 44
Appendix: Validation on β π‘π’ β 0 π ππ = π ππ Validation on hardware 45
Appendix: Statistics on CLSS 46
Appendix: Simulation VS Hardware 47
Appendix: Open Loop Systematic Search 48
Appendix: Open Loop Systematic Search 49
Appendix: D-S run Open Loop CPG D-S run Rotary Gallop Trot π€ π [π β π‘ β1 ] 0.25 0.5 0.75 1 50
Appendix: 0.75 Hz Binary Convergence 51
Appendix: Robot version 1 52
Appendix: Hardware Limitations 53
Appendix: PSO Results 54
Appendix: PSO Results 55
Recommend
More recommend