femtosecond laser
play

femtosecond laser Daniele Brida 17.02.2016 Universitt Konstanz - PowerPoint PPT Presentation

How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Universitt Konstanz Konstanz Universitt Konstanz Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Universitt Konstanz Frequency comb


  1. How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Universität Konstanz

  2. Konstanz Universität Konstanz

  3. Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Universität Konstanz

  4. Frequency comb laser Time domain : pulse train Frequency domain: comb 4 26.03.2016 Universität Konstanz

  5. Mode locking Establish a precise phase relation between the modes of the cavity with a well defined phase -> pulses 5 26.03.2016 Universität Konstanz

  6. Mode locking: How to Solution: Nonlinearity Kerr lens mode locking 6 26.03.2016 Universität Konstanz

  7. Ti:sapphire laser Time domain : pulse train Frequency domain: comb 7 26.03.2016 Universität Konstanz

  8. Fiber lasers Guided operations: the mode is confined in an optical fiber PRO • Virtually alignment free • Robustness • Weakly affected by the environment • Stability CONS • Careful design (you cannot optimize it) • (Low power) • (dispersion managment) Universität Konstanz

  9. Possible Gain Media Yb: 1030 nm Er: 1550 nm Tm/Ho: ~2000 nm … In general: rare earth ions in silica matrix Universität Konstanz

  10. CW vs femtosecond CW laser diode Mirror Femtosecond laser -> short pulses -> frequency comb PROBLEM: dispersion Universität Konstanz

  11. Linear propagation of short pulses Examples Universität Konstanz

  12. Er:fiber laser Universität Konstanz

  13. Er 3+ ions as gain medium 1550 high transparency window for fused silica True 3-level system Lasing at 1550 requires significant population inversion!! Universität Konstanz

  14. Er 3+ ions more details 3 level system Lifetime of the lasing level is fairly long: 10 ms Green fluorescence Universität Konstanz

  15. Mode locking operations in a fiber laser Three approaches: - Active modulation - Instantaneous Nonlinearity - Ultrafast saturable absorber Universität Konstanz

  16. Femtosecond fiber laser 1: figure of 8 Asymmetry in the path between clockwise and counterclockwise propagation The isolator is the lossy component Universität Konstanz

  17. Femtosecond fiber laser 2: Polarization Rotation Nonlinearity: XPS Typically it requires outcoupling to free space within the oscillator Universität Konstanz

  18. Femtosecond fiber laser 2: Polarization Rotation Fiber GVD 1 . 55 μ m (ps 2 /km) Length (mm) F1 -19.7 528 F2 -4.76 2340 F3 0.9 393 EDF 19 680 Universität Konstanz

  19. Femtosecond fiber laser 3: Saturable Absorber Saturable Absorber Mirror SAM works as a mirror only if the optical power in the cavity is sufficiently high It has to show a dynamical behavior and recover the “ lossy ” condition really quickly Universität Konstanz

  20. Femtosecond fiber laser 3: Saturable absorber Universität Konstanz

  21. Germanium Saturable Absorber Mirror Universität Konstanz

  22. InGaAs Saturable Absorber Mirror Direct gap semiconductor GaAs at the center of the Brillouin zone Universität Konstanz

  23. InGaAs Saturable Absorber Mirror Universität Konstanz

  24. Solitonic Oscillator Solitonic propagation condition Where The pulse temporal profile is: Universität Konstanz

  25. Solitonic Oscillator Transform Limit pulse duration of approximately 300 fs Output power 2/3 mW Universität Konstanz

  26. Femtosecond fiber laser 3: Saturable absorber Universität Konstanz

  27. Femtosecond fiber laser 3: Saturable absorber Universität Konstanz

  28. Femtosecond fiber laser: polarization Universität Konstanz

  29. Discussion VS Noise performances (Shot noise) Environmental robustness Optimization Pulse energy Universität Konstanz

  30. Femtosecond Er:Fiber-Amplifier Single pass amplifier 2.5 m long gain medium (Er:PM-Fiber) with normal dispersion 980 nm pump light injected from both sides (each with 700 mW) Amplification up to 330 mW , → Pin/Pout ≈ 500 Spectral broadening due to SPM (Self Phase Modulation) and other nonlinear effects in EDF and collimator fiber Recompression of the pulse in a silicon prism compressor Universität Konstanz

  31. Nonlinear amplifier: dispersion managment Optimization of the nonlinearity during amplification by a pre-stretching fiber Also the pump diode coupling is a degree of freedom 1 co-propagating, 1 counterpropagating to optimize the inversion profile in the EDF 31 26.03.2016 Universität Konstanz

  32. Amplifier Bandwidth Dl = 70 nm Pulse duration T FWHM = 130 fs Degree of Polarisation > 98% 330 mW before compressor and 305 mW after compressor Pulse energy: 8 nJ Almost perfect synchronisation possible (43 as) Universität Konstanz

  33. General Setup attosecond timing jitter: F. Adler, et al., Opt. Lett. 32 , 3504 (2007) tailored spectra : A. Sell, G. Krauss et al., Opt. Express 17 , 1070 (2009) Oscillator Spectrum Amplifier Spectrum Reconstructed FROG  1.0 1.0 1.0 t FWHM = Normalized intensity E p = 8 nJ 0.8 0.8 0.8 P = 320 mW 128 fs Phase (rad) P = 2.5 mW 0.6 0.6 0.6 Dl = 5.4 nm  0.4 0.4 0.4 0.2 0.2 0.2   0.0 0.0 0.0 1540 1555 1570 1500 1550 1600 -400 -200 0 200 400 Wavelength (nm) Time (fs) Wavelength (nm) Universität Konstanz

  34. Variable Pulse Compression Compression in silicon prism sequence  variable prechirp Pumping of highly nonlinear fiber  tunability of dispersive wave and soliton Collimation with off-axis parabolic mirror  no chromatic aberration Universität Konstanz

  35. Nonlinear Pulse Propagation Quantitative modeling without free parameters: Gain/absorption Dispersion up to 6 th order (measured via white-light interferometry) Instantaneous Kerr nonlinearity Retarded Raman effect Amplitude and phase spectra of pump (measured via FROG)  Central design tool with predictive power               2                    2 3 2 3    A ( z , t ) i i A ( z , ) i A ( z , ) A ( z , ) R ( ) d        z 1 1     2 2 6     0 Universität Konstanz

  36. Tailored Spectra in Highly Nonlinear Fibers I Two-stage process 1 st step: soliton compression in standard telecom fiber (l ≈ 10 cm, Ø Core = 10.5 µm) Spectrum broadens and pulse is compressed to 14 fs Universität Konstanz

  37. Tailored Spectra in Highly Nonlinear Fibers II 2 nd step: four-photon interactions in HNF (Ø Core = 4 µm) Spectrum splits into two components: Soliton Dispersive wave Universität Konstanz

  38. Tuning via Prechirp Control of nonlinear frequency shift: prechirp of pump (determines minimum pulse duration before HNF) P out > 30 mW (dispersive wave) and > 50 mW (soliton) Spectral range covered: 800 nm to 2400 nm time evolution in precompression fiber spectral evolution in HNF 7 Spectral power (arb.unit.) 6 5 4 3 2 1 0 0.8 1.0 1.2 1.4 1.6 1.8 2 2.2 2.4 Wavelength (  m) Universität Konstanz

  39. Ultrabroad Spectra I Optimized dispersion profiles for ultrabroadband and unstructured spectra Quantitative agreement between simulation and experiment Maximum spectral width in dispersive wave: Dl = 580 nm P out = 23 mW Compression in glass prism compressor Universität Konstanz

  40. 7.8 fs Dispersive Wave Retrieved pulse duration: t p = 7.8 fs  two optical cycles Bandwidth limit: 7.0 fs Good agreement between measured and retrieved spectrum Perfect match between measured and calculated autocorrelation A. Sell, et al. Opt. Express 17 , 1070 (2009) Universität Konstanz

  41. Few-Cycle Soliton from HNF 2 Retrieved pulse duration: t p = 31 fs 5 optical cycles Fourier limit: 23 fs Average output power: 55 mW Universität Konstanz

  42. Single-Cycle Setup I I l l I l Universität Konstanz

  43. Single-Cycle Pulse Synthesis Large delay times D t: second-order auto- and cross-correlations Decreasing D t: Cross- correlation shifts towards center Amplitude of central fringe increases strongly Maximum amplitude for D t = 0 Universität Konstanz

  44. Single-Cycle Pulse Characterization Separate FROG analysis of spectral amplitude and phase of soliton and dispersive wave Amplitude ratio: linear spectrum Two missing parameters left for total characterization: Linear slope (time delay D t) Relative phase Dj between dispersive wave and soliton Universität Konstanz

  45. Single-Cycle Pulses: Results Determination of phase spectrum from FROG traces and least-square fit of Dj and D t to second-order autocorrelation Temporal amplitude and phase via Fourier transform Retrieved pulse duration: t p = 4.3 fs Pulse energy: E p = 1 nJ  Single cycle of light in the telecom wavelength regime Universität Konstanz

  46. Carrier-Envelope Phase Control D • 2 frequency spectrum consists of equidistant lines with CEO-frequency offset  T 1/ f • slippage of carrier rep envelope phase due to group and phase velocity f mismatch CEO • control of CEO-frequency essential for: • nonlinear physics f rep • metrology   f f n f n CEO rep Universität Konstanz

Recommend


More recommend