fairness risk measures fairness risk measures
play

FAIRNESS RISK MEASURES FAIRNESS RISK MEASURES Robert C. Williamson - PowerPoint PPT Presentation

FAIRNESS RISK MEASURES FAIRNESS RISK MEASURES Robert C. Williamson Aditya Menon LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES Walds abstraction: a loss function : Y A + {+


  1. FAIRNESS RISK MEASURES

  2. FAIRNESS RISK MEASURES Robert C. Williamson Aditya Menon

  3. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES

  4. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space

  5. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a )

  6. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a ) ▸ Learning goal: expected risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P ℓ ( 𝖹 , f ( 𝖸 ))

  7. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a ) ▸ Learning goal: expected risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P ℓ ( 𝖹 , f ( 𝖸 )) ▸ In practice: empirical risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P m ℓ ( 𝖹 , f ( 𝖸 )) m 1 ∑ = min ℓ ( y i , f ( x i )) m f ∈ℱ i =1

  8. MINIMISING EMPIRICAL RISK

  9. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS

  10. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F1 F1

  11. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F2 F2

  12. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F3 F3

  13. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F4 F4

  14. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5

  15. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5

  16. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE

  17. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS

  18. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F1 F1

  19. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F2 F2

  20. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F3 F3

  21. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F4 F4

  22. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5

  23. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE

  24. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9

  25. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F1 F1

  26. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F2 F2

  27. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F3 F3

  28. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F4 F4

  29. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  30. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  31. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  32. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  33. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 2 3 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 Sensitive 
 Feature index HYPOTHESIS F5 F5

  34. MINIMISING AGGREGATED EMPIRICAL RISK

  35. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index HYPOTHESIS

  36. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F1 F1 HYPOTHESIS

  37. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F2 F2 HYPOTHESIS

  38. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F3 F3 HYPOTHESIS

  39. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F4 F4 HYPOTHESIS

  40. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  41. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  42. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 ▸ Equity problem: also take account of variation 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  43. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 ▸ Equity problem: also take account of variation Loss ▸ Fairness problem: mixture of both 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  44. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION

  45. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION ▸ Trade off low deviation against higher average

  46. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3

  47. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F5 F5

  48. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F6 F6

  49. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 ▸ Let be the sensitive feature space S = {1,2,3} 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F6 F6

  50. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 ▸ Let be the sensitive feature space S = {1,2,3} ▸ For let be a r.v. (taking as the 𝖲 f : S → ℝ f ∈ ℱ S 40 40 sample space, with a uniform base measure) Loss 20 20 𝖲 f : S ∋ s ↦ 𝔽 ( 𝖸 , 𝖹 ) [ ℓ ( 𝖹 , f ( 𝖸 )) | 𝖳 = s ] 0 0 1 1 2 2 3 3 F6 F6

Recommend


More recommend