FAIRNESS RISK MEASURES
FAIRNESS RISK MEASURES Robert C. Williamson Aditya Menon
LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES
LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label Action space space
LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label Action space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a )
LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label Action space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a ) ▸ Learning goal: expected risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P ℓ ( 𝖹 , f ( 𝖸 ))
LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label Action space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a ) ▸ Learning goal: expected risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P ℓ ( 𝖹 , f ( 𝖸 )) ▸ In practice: empirical risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P m ℓ ( 𝖹 , f ( 𝖸 )) m 1 ∑ = min ℓ ( y i , f ( x i )) m f ∈ℱ i =1
MINIMISING EMPIRICAL RISK
MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS
MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F1 F1
MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F2 F2
MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F3 F3
MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F4 F4
MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5
MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 Average loss of 50 50 best hypothesis 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5
MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE
MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS
MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F1 F1
MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F2 F2
MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F3 F3
MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F4 F4
MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 Average loss of 50 50 best hypothesis 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F1 F1
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F2 F2
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F3 F3
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F4 F4
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average loss of 50 50 best hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average loss of 50 50 best hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average loss of 50 50 best hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5
MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 2 3 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 Sensitive Feature index HYPOTHESIS F5 F5
MINIMISING AGGREGATED EMPIRICAL RISK
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F1 F1 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F2 F2 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F3 F3 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F4 F4 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 ▸ Equity problem: also take account of variation 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 ▸ Equity problem: also take account of variation Loss ▸ Fairness problem: mixture of both 100 100 50 50 0 0 Sensitive 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS
MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION
MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION ▸ Trade off low deviation against higher average
MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3
MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F5 F5
MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F6 F6
MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 ▸ Let be the sensitive feature space S = {1,2,3} 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F6 F6
MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 ▸ Let be the sensitive feature space S = {1,2,3} ▸ For let be a r.v. (taking as the 𝖲 f : S → ℝ f ∈ ℱ S 40 40 sample space, with a uniform base measure) Loss 20 20 𝖲 f : S ∋ s ↦ 𝔽 ( 𝖸 , 𝖹 ) [ ℓ ( 𝖹 , f ( 𝖸 )) | 𝖳 = s ] 0 0 1 1 2 2 3 3 F6 F6
Recommend
More recommend