neutron QCD matter physics at the future matter Facility for Antiproton and Ion Research Peter Senger Outline: The Facility on Antiproton and Ion Research Exploring cosmic matter in the laboratory: - the high-density nuclear matter equation-of-state - the QCD phase diagram The Compressed Baryonic Matter (CBM) experiment 13 th International Conference on Nucleus-Nucleus Collisions, Saitama, Japan, Dec. 4 – 8, 2018
Facility for Antiproton & Ion Research SIS100 /300 p-Linac SIS18 Compressed Baryonic Matter Primary Beams • 10 12 /s; 1.5 GeV/u; 238 U 28+ Anti-Proton • 10 10 /s 238 U 92+ up to 11 (35) GeV/u Physics • 3x10 13 /s 30 (90) GeV protons Super Fragment-Separator: HESR Nuclear Structure and Astrophysics Secondary Beams • radioactive beams up to 1.5 - 2 GeV/u; • 10 11 antiprotons 1.5 - 15 GeV/c Technical Challenges FAIR phase 1 CR • rapid cycling superconducting magnets FAIR phase 2 2 • dynamical vacuum 100 m
Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac Compressed Baryonic Matter HESR Anti-Proton Physics Super Fragment- Separator: Nuclear Structure and Astrophysics NUSTAR: Rare Isotope beams CR FAIR phase 1 FAIR phase 2 100 m 3
Nuclear astrophysics: The origin of elements Measurements in the laboratory: Mass, lifetime, decay channels, structure of very rare instable (neutron or proton rich) nuclei rp-, p- process: Synthesis of nuclei with masses close to and beyond the proton dripline in binary systems of a sun and a neutron star X-ray binary s- (slow) process: Synthesis of heavy nuclei via slow neutron capture in very massive stars r- (rapid) process: Synthesis of very neutron-rich instable nuclei via rapid capture of neutrons in neutron star mergers 4
Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac Compressed Baryonic Matter HESR Anti-Proton Physics Super Fragment- Separator: Nuclear Structure and PANDA: Astrophysics Antiproton-proton collisions CR FAIR phase 1 FAIR phase 2 100 m 5
Hadron Physics with antiprotons at FAIR Charmonium states: Gluonic excitations: Time-like form factors, Precision Hybrids, glueballs nucleon structure spectroscopy In medium mass modifications: Extension of nuclear chart: Extension to the charm sector Double hypernuclei p - 25 MeV p p + K + K 100 MeV K - D D - 50 MeV D +
Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac HESR Anti-Proton Physics Super Fragment- Separator: Atomic Nuclear Structure and Astrophysics Physics Plasma & CR Applied Sciences FAIR phase 1 FAIR phase 2 100 m 7
Atomic Physics, Plasma and Applied Sciences Bio Materials Atomic Physics Plasma MAT/BIOMAT BIO/BIOMAT SPARC FLAIR HEDgeHOB/WDM strong field anti-matter planetary extreme aerospace research interiors conditions engineering ... probing of ... matter / anti- ... states of matter ... radiation hardness ... radiation fundamental laws matter common in and modification of shielding of cosmic of physics asymmetry astrophysical objects materials radiation • Highest Charge States: Extreme Static Fields • Relativistic Energies: Extreme Dynamical Fields and Ultrashort Pulses • High Intensities: Very High Energy Densities and Pressures • High Charge at Low Velocity: Large Energy Deposition • Low-Energy Anti-Protons: Antimatter Research
Facility for Antiproton & Ion Research Experimental programs SIS100 /300 SIS18 p-Linac Compressed Baryonic Matter HESR Anti-Proton Physics Super Fragment- Separator: Compressed Nuclear Structure and Astrophysics Baryonic Matter: Nucleus-nucleus collisions CR FAIR phase 1 FAIR phase 2 100 m 9
QCD matter physics P=P(E,T, ρ ,I) 10
Neutron star mergers and heavy-ion collisions density temperature M. Hanauske et al., J. Phys.: Conf. Ser. 878 012031 n-star merger EOS Au +Au 1.5A GeV 11
The nuclear matter equation-of-state The nuclear matter equation of state (EOS) describes the relation between density, pressure, temperature, energy, and isospin asymmetry Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5 P = d E/ d V T=const V = A/ ρ d V/ d ρ = - A/ ρ 2 P = ρ 2 d (E/A)/ d ρ T=const Neutron matter E/A E A ( ρ,δ) = E A ( ρ,0)+ E sym ( ρ)·δ 2 E sym Symmetric matter with δ= (ρ n –ρ p )/ ρ 12
The EOS of (symmetric) nuclear matter E A ( ρ,δ) = E A ( ρ,0) + E sym ( ρ)·δ 2 + O( δ 4 ) C. Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1 T=0: E/A = 1/ ρ U ( ρ )d ρ Effective NN-potential: U (r)=ar+br g E/A( ρ o ) = -16 MeV slope d (E/A)( ρ o )/ d ρ = 0 curvature K nm = 9 ρ 2 d 2 (E/A)/ d ρ 2 (nuclear incompressibility) Measurements at GSI SIS18: elliptic flow of light fragments subthreshold kaon production K nm = 200 MeV: "soft" EOS K nm = 220 40 MeV: "soft" EOS A. Le Fevre et al., Nucl. Phys. A945 (2016) 112 C. Sturm et al., (KaoS Collaboration) Phys. Rev. Lett. 86 (2001) 39 K nm = 380 MeV: "stiff" EOS Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974
The nuclear symmetry energy E A ( ρ,δ) = E A ( ρ,0)+ E sym ( ρ) · δ 2 Ch. Fuchs and H.H. Wolter, EPJA30 (2006) 5 Empirical value E sym ( ρ 0 ) ≈ 30 MeV slope elliptic flow n/ch E sym (MeV) theoretical value L( ρ 0 ) ≈ 60 MeV B.A. Li and X. Han, Phys. Lett. B 727 (2013) 276 curvature theoretical value K sym = -700 to 470 MeV P. Russotto et al., Phys. Rev. C 94, 034608 (2016)
Mass-density relation of neutron stars for different EOS PSR J1614-2230 M = 1.97 0.04 M sun P. Demorest et al., Nature 467, 1081 (2010) PSR J0348+0432 M = 2.01 0.04 M sun J. Antoniadis et al., Science 340 , 6131 (2013 ) 3 ρ 0 5 ρ 0 8 ρ 0 T. Klaehn et al., Phys. Rev. C74: 035802, 2006
The high-density nuclear matter equation-of-state Symmetry energy E sym ? Neutron matter 3 – 5 ρ 0 E/A Symmetric matter EOS ? E sym Symmetric matter 3.0 3.5 4.0 4.5 5.0 16
Baryon densities in central Au+Au collisions I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007) 10 A GeV 5 A GeV 8 ρ 0 5 ρ 0 2 ρ 0 5 ρ 0 17 courtesy Toru Kojo (CCNU)
CBM physics case and observables The QCD matter equation-of-state at neutron star core densities collective flow of identified particles ( π ,K,p, Λ , Ξ , Ω ,...) driven by the pressure gradient in the early fireball EOS of symmetric matter extracted from proton flow in Au+Au collisions measured at AGS for beam energies from 2 to 11A GeV. hard EoS soft EoS K + prod. Azimuthal angle distribution: dN/d φ = C (1 + v 1 cos( φ ) + v 2 cos(2 φ ) + ...) P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592
CBM physics case and observables The QCD matter equation-of-state at neutron star core densities particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Direct multi-strange hyperon production: pp K + p Λ 0 Λ 0 Λ 0 - p pp - K + K + p pp K + p Λ 0 (E thr = 3.7 GeV) pp - K + K + K 0 p (E thr = 7.0 GeV) Λ 0 - - n pp K + p Λ 0 pp Λ 0 Λ 0 pp (E thr = 7.1 GeV) pp + - pp (E thr = 9.0 GeV) pp K + p Λ 0 pp + - pp (E thr = 12.7 GeV Λ 0 Λ 0 - p pp K + p Λ 0 K - - - p - Hyperon production via multiple collisions pp ppK + K - 1. pp K + Λ 0 p , pp K + K - pp, 2. p Λ 0 K + - p, πΛ 0 K + - π , pp K + p Λ 0 Λ 0 K - - p 0 Λ 0 p K + - p Λ 0 Λ 0 - p , p 3 . Λ 0 - - n , - K - - p - pp K + p Λ 0 Λ 0 - - n Antihyperons 1. Λ 0 K + + p 0 , 2. + K + + p + . Hyperon yield multi-step collisions density EOS
CBM physics case and observables The QCD matter equation-of-state at neutron star core densities particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Ω - production in 4A GeV Au+Au HYPQGSM calculations, K. Gudima, Y. Murin et al. , priv. comm.
CBM physics case and observables The QCD matter equation-of-state at neutron star core densities particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Hyperon yield in 4A GeV Au+Au: soft EOS (K=240 MeV) / hard EOS (K=350) MeV Ω - Ω + Ξ + Λ Ξ - Λ PHQMD calculations , V. Kireyeu et al., priv. comm.
CBM physics case and observables The QCD matter equation-of-state at neutron star core densities particle production at (sub)threshold energies via multi-step processes (multi-strange hyperons, charm) Simulations using the UrQMD event generator for central Au+Au collisions 10A GeV based on realistic detector responses FAIR
CBM physics case and observables The symmetry energy E sym at high density Elliptic flow neutrons/protons (upgrade option) Particles with opposite isospin π - / π + E thr I 3 particle production decay GeV Σ + p π 0 Σ + (uus) pp Σ + K + n +1 pp Σ + K 0 p 1.8 Σ + n π + pn Σ + K 0 n Au+Au 400A MeV n/p flow Σ - n π - Σ - (dds) pn Σ - K + p 1.8 -1 nn Σ - K + n n/p flow Missing mass method π - / π + π - / π + W.-M. Guo et al., Phys. Lett. B738 (2014) 397
Quark matter in massive neutron stars? M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, arXiv:1308.1657 Phys. Rev. C 89, 015806, 2014 QCD phase diagram
Recommend
More recommend