facilities for beam driven pwfa
play

Facilities for Beam Driven PWFA Snowmass Preparatory Workshop, U. of - PowerPoint PPT Presentation

Facilities for Beam Driven PWFA Snowmass Preparatory Workshop, U. of Chicago Mark Hogan February 25, 2013 The Beam Driven Plasma Wakefield Accelerator ~1m ~100 m q Two-beam, co-linear, plasma-based accelerator q Plasma wave/wake excited


  1. Facilities for Beam Driven PWFA Snowmass Preparatory Workshop, U. of Chicago Mark Hogan February 25, 2013

  2. The Beam Driven Plasma Wakefield Accelerator ~1m ~100 µ m q Two-beam, co-linear, plasma-based accelerator q Plasma wave/wake excited by relativistic particle bunch q Deceleration, acceleration, focusing by plasma q Accelerating field/gradient scales as ne1/2 q Typical: n e ≈ 10 17 cm -3 , λ p ≈ 100 µ m, G>MT/m, E>10 GV/m q High-gradient, high-efficiency energy transformer q “Blow-out” regime when n b /n p >> 1 2

  3. SLAC/UCLA/USC Experiments @ FFTB Studied many aspects of beam-plasma interaction X-ray Generation Focusing e - Wakefield Acceleration e - Focusing & Matching e - 300 600 ! 0 Plasma Entrance =50 µm L=1.4 m Plasma OFF ! 0 =14 µm Plasma ON $ N =12 % 10 -5 (m rad) 250 500 Envelope # N =18 $ 10 -5 m-rad & 0 =1.16m ! X DS OTR (µm) % 0 =6.1 cm 200 400 & 0 =-0.6 ! x (µm) 150 300 100 200 50 100 05160cedFIT.graph BetatronFitShortBetaXPSI.graph 0 0 -2 0 0 2 2 4 4 6 6 8 10 8 12 10 14 12 1/2 L Phase Advance ! " n e " =K*L # n e 1/2 L Phase Advance ! " n e 1/2 L " Phys. Rev. Lett. 93 , 014802 (2004) Phys. Rev. Lett. 93 , 014802 (2004) Phys. Rev. Lett. 88 , 154801 (2002) Phys. Rev. Lett. 88 , 135004 (2002) Matching e - Electron Beam Refraction at the Focusing & Halo Formation e + Wakefield Acceleration e + Gas–Plasma Boundary 0.3 600 #" 1/sin $ L=1.4 m Plasma OFF ! 0 =14 µm Plasma ON 0.2 500 Envelope # N =18 $ 10 -5 m-rad % 0 =6.1 cm 400 0.1 ! (mrad) & 0 =-0.6 ! x (µm) 300 0 # ! $ 200 -0.1 100 o BPM Data -0.2 – Model BetatronFitShortBetaXPSI.graph 0 -0.3 0 2 4 6 8 10 12 14 -8 -4 0 4 8 Phase Advance ! " n e 1/2 L " " (mrad) Phys. Rev. Lett. 101 , 055001 (2008) 3 Phys. Rev. Lett. 90 , 214801 (2003) Phys. Rev. Lett. 93 , 014802 (2004) Nature 411 , 43 (3 May 2001)

  4. SLAC Plasma Research Motivated by Access to the Energy Frontier and Compact XFELs q Acceleration Gradients of ~50GeV/m (3,000 x SLAC) § Doubled energy of 45 GeV electrons in 1 meter plasma q Single Bunch Nature 445 741 15-Feb-2007 Next Step: Particle acceleration to beam acceleration @ FACET 4

  5. M ULTIBUNCH PWFA Transformer Ratio: R = E + E − Energy Gain: ≤ RE 0 E 0 : incoming energy σ r =125 µm, n e =1.8x10 16 cm -3 , λ p =250 µm Q=30 pC/bunch, ∆ z=250 µm ≈ λ p ∆ z=375 µm ≈ 1.5 λ p Bunch Train Ramped Bunch Train * Large R Large wakefield E + 75 45 Q=15 E - *Tsakanov, NIMA, 1999 Kallos, PAC’07 Proceedings R=7.9 => multiply energy by ≈ 8 in a single PWFA stage! Large energy transfer efficiency 3 P. Muggli, 09/30/2010

  6. Proton-driven plasma wakefield acceleration (PDPWA) p + e - Drive beam: p + E=1 TeV, N p =10 11 σ z =100 µm, σ r =0.43 mm σ θ =0.03 mrad, Δ E/E=10% 600 GeV e - beam Witness beam: e - ≤ 1% Δ E/E in ~500m plasma E 0 =10 GeV, N e =1.5x10 10 Plasma: Li + n p =6x10 14 cm -3 External magnetic field: Field gradient: 1000 T/m Magnet length: 0.7 m A. Caldwell, K. Lotov, A. Pukhov, F. Simon, Nature Physics 5, 363 (2009).

  7. DOE HEP Investments Have Realized Beam & Laser Driven Plasma Accelerators > GeV 11 10 Laser Driven Plasma Accelerators: Beam Driven (e - ) E − 167 Large Gradients: Beam Driven (e + ) • Accelerating Gradients > 100GeV/m (measured) Laser Driven (e - ) E − 164XX 10 • Narrow Energy Spread Bunches 10 • Interaction Length limited to cm’s E − 164X Specialized Facilities: Particle Energy / eV • Multi-TW-PW lasers • Plasma Channels/Capillaries 9 10 L’OASIS Beam Driven Plasma Accelerators: Large Gradients: E − 162 (e − ) • Accelerating Gradients LOA > 50 GeV/m (measured!) LOA 8 • Focusing Gradients L’OASIS 10 RAL > MT/m RAL E − 162 (e+) • Interaction Length ~ meters UCLA Unique SLAC Facilities: KEK • FFTB < 2006, FACET > 2011 7 ILE 10 • High Beam Energy • Short Bunch Length • High Peak Current • Power Density LLNL • e- & e+ 6 10 1990 1995 2000 2005 2010 Year LWFA: T. Tajima and J. M. Dawson PWFA: P. Chen et al Phys. Rev. Lett. 43, 267 - 270 (1979) Phys. Rev. Lett. 54, 693 - 696 (1985) 7

  8. DOE HEP Investments Have Realized Beam & Laser Driven Plasma Accelerators > GeV 11 10 Beam Driven (e - ) E − 167 DOE HEP Office Of Science Issued CD-0 for Beam Driven (e + ) Advanced Plasma Acceleration Facility February Laser Driven (e - ) 2008 E − 164XX 10 10 Answered by Two Facilities: BELLA (LWFA) @ LBNL E − 164X FACET (PWFA) @ SLAC Particle Energy / eV 9 10 L’OASIS E − 162 (e − ) LOA LOA 8 L’OASIS 10 RAL RAL E − 162 (e+) UCLA KEK 7 ILE 10 LLNL 6 10 1990 1995 2000 2005 2010 Year LWFA: T. Tajima and J. M. Dawson PWFA: P. Chen et al Phys. Rev. Lett. 43, 267 - 270 (1979) Phys. Rev. Lett. 54, 693 - 696 (1985) 7

  9. FACET: Facility for Advanced Accelerator Experimental Tests New Installation @ 2km point of SLAC linac: Chicane, FF, Experimental Area Multi-GeV meter-scale plasma cells require: High-density plasmas – gradient § High-energy beams – stored energy § Tightly focussed – match to plasma § focusing channel Experiments High peak-current – large wake amplitude § here FACET Beam Pa Beam Parameters Energy 23 GeV Charge 3 nC s r 20 µ m s z 20 µ m Peak Current 20 kA Species e - & e + A Unique Facility for Accelerator Science 8

  10. Beam Requirements for Next Generation PWFA Experiments High gradients need high density plasmas • ~10 17 e - /cm 3 • >10GeV/m acceleration • >MT/m focusing FACET Needs: • Need two bunches, 100’s fs apart • Individual bunches small in all three dimensions • High bunch charge for blow-out with large wake amplitude & good transport • Need long, uniform high-density plasmas • High-energy for extended meter-scale interaction FACET is the only facility in the world where we can do meter-scale high-gradient plasma acceleration 9

  11. FACET E200 PWFA Program Goals – Next Four Years Collaboration between SLAC/UCLA/MPI • Demonstrate a single-stage high-energy plasma accelerator for electrons - This is THE highest scientific priority for FACET • Meter scale, high gradient, preserved emittance, low energy spread, and high efficiency - Commission beam, diagnostics and plasma source (2012) - Produce independent drive & witness bunch (2012-2013) - Pre-ionized plasmas and tailored profiles to maximize single stage performance: total energy gain, emittance, efficiency (2013-2015) • First experiments with compressed positrons - Identify optimum technique/regime for positron PWFA (2014-2016) Want to demonstrate a plasma module with beam parameters and energy gain at the level required for novel radiation sources and Higgs Factory upgrade 10

  12. FACET is Beginning the 2 nd Phase of Beam Driven Plasma Wakefield Accelerators FFTB Ultra-high-gradient particle acceleration Demonstration FACET Meter scale Machine: Beams Higgs Factory, Low dE/E 11 10 XFEL, ? Beam Driven (e - ) E − 167 Beam Driven (e + ) Laser Driven (e - ) E − 164XX 10 10 FACET-II E − 164X Particle Energy / eV High-brightness beams: Low dE/E 9 10 L’OASIS Sub- µ m Emittance Staging High Efficiency E − 162 (e − ) LOA High-gradient w/ Positrons LOA 8 L’OASIS 10 RAL RAL E − 162 (e+) UCLA The FACET program is a critical step on a KEK path to compact high-energy accelerators 7 10 ILE for access to the energy frontier and smaller XFELs LLNL 6 10 2015 2020 2025 1990 1995 2000 2005 2010 11 Year

  13. A Concept for a Beam Driven Plasma Wakefield Accelerator Linear Collider FACET E cm = 1 TeV L = 10 34 cm 2 s -1 Efficiency wall plug ~ 11% FACET program will transition from particle acceleration to beam acceleration and demonstrate a single PWFA stage with a high-quality beam 10

  14. ~ ¡4 ¡km New ¡concept ¡for ¡a ¡PWFA-­‑LC e+ e-­‑ E cm ¡= ¡1 ¡TeV, ¡L=1.3x10 34 , ¡T=1.0 Main ¡e-­‑ ¡beam ¡(CW) ¡: Main ¡e+ ¡beam ¡(CW) ¡: Absolutely ¡not ¡to ¡scale DR DR Q=1.0 ¡x ¡10 10 e ¡@ ¡12.5 ¡kHz Q=1.0 ¡x ¡10 10 e + ¡@ ¡12.5 ¡kHz e+ ¡source P MB,final ¡= ¡10 ¡MW e-­‑ ¡source 20 ¡plasma ¡stages, ¡ Δ E=25 ¡GeV ¡each ¡stage P P P P P P P P BDS ¡and ¡final ¡focus, (3 ¡km) MagneKc ¡chicanes 2 ¡ns ¡delay InjecKon ¡every ¡half ¡turn, C=1200 ¡m, ¡P loss /P DB ¡= ¡10% ¡ Drive ¡beam ¡aLer ¡accumulaKon ¡: Accu-­‑ Trains ¡of ¡20 ¡bunches, ¡2 ¡ns ¡apart ¡@ ¡12.5 ¡kHz mulator SCRF ¡CW ¡recirculaKng ¡linac ¡ ring ~500 ¡m, ¡19 ¡MV/m Drive ¡beam ¡(CW) ¡: ~ ¡25 ¡m E ¡= ¡25 ¡GeV, ¡Q=2.0 ¡x ¡10 10 e ¡@ ¡12.5 ¡x ¡40 ¡kHz DB Matching P DB,iniKal ¡= ¡2 ¡x ¡20 ¡MW MB ¡bunch dump to ¡ β * ~1cm ¡ e-­‑ ¡source @ ¡12.5 ¡kHz ¡ ¡ ¡injecKon P Main ¡beam ¡structure ¡ Plasma ¡cell Δ z DB,WB ¡~ ¡200 ¡um Δ E=25 ¡GeV ¡ 80 ¡us Drive ¡beam ¡structure ¡out ¡of ¡linac ¡ @ ¡injecKon ~ ¡1 ¡m 2 ¡us DB ¡20-­‑bunch ¡train 2 ¡ns ¡delay θ ~10 ¡mrad Drive ¡beam ¡structure ¡out ¡of ¡acc. ¡ring ¡ ¡ @ ¡12.5 ¡kHz J.P. ¡Delahaye, ¡E. ¡Adli, ¡S. ¡Gessner ~30cm ¡SLAC ¡BB ¡seminar, ¡Dec ¡13, ¡2012 80 ¡us 2 ¡ns Fast ¡kicker 2 ¡ns

Recommend


More recommend