* Definition of Derivative: y f x The first derivative of the function with f respect to the variable x is the function whose value at x is: f x h f x dy f x y lim dx h h 0 provided the limit exists.
Important theorems: 1. If y = f(x) is differentiable at x = a , then y = f(x) is continuous at a . The inverse is not always true. 2. If the function y = f(x) is discontinuous at the point x = a , then it is not differentiable at this point.
Geometric Interpretation of Derivative: * The slope of tangent line to the graph of the function f(x) at (a,f(a)) is the derivative of f(x) at x = a . y y f x . . f a h f a P h h x a a h f a h f a f a lim h h 0 = Slope of tangent at P
* we can write the equation of the tangent line to the curve at the point (a, f(a)) : y f a f a x a Example Find an equation of the tangent line to the curve 2 y x 8 x 9 at the point (3,- 6). Solution y 3 2 3 8 2 y 2 x 8 y 2 x y 6 2 x 3
Rules of Differentiation: d d c f x c f x dx dx d 2 3 x 3 2 x 6 x dx f g f g d 3 2 x 6 x 5 3 x 6 dx
f g f g g f d 3 2 3 2 x x x dx 2 3 2 x 3 3 x 1 x x 2 2 f f g g f 2 g g 4 3 x x 1 x 1 4 x 1 d x 1 4 2 dx x x 4 x x
Tables of Differentiation f x f x Table (1) k (const ant) 0 k k x 1 n n nx x 1 x 2 x x x e e x x a a ln a 1 ln x x
Table (2) Table (3) Trigonometric Functions Hyperbolic Functions f x f x f x f x cos x sinx sinhx cosh x - cos x sin x cosh x sinh x 2 tan x 2 sec x tanh x sec h x - 2 - cot x 2 csc x csc h x coth x sec x - sec x tan x sec hx sec h x t nh a x - - csc cot x x csc x csc hx csc h x c th o x
Example Differentiate the functions: 3 a y ) x sin x 2 y 3 x cos x b y ) x cosh x 1 y x sinh x cosh x 2 x 3 x cos x ) c y sin x 3 1 2 / 3 2 / 2 x sin x sin x cos x x cos x y 2 sin x
Example: Obtain the derivative of tan x from sin x and cos x. Solution: d d sin x tan x dx dx cos x cos cos sin sin x x x x 2 cos x 2 2 1 cos x sin x 2 sec x 2 2 cos x cos x
The Derivative of a Composite Function d f g h x f g h x dx g h x h x x
Examples Differentiate the functions: y 2 2 cos x a ) y s n i x 2 x 3 ' 3 y sin x sin x ) y cos si n b x x 1 3 2 sin x x 2 3 x cos x
Examples 1 1 tan sec hx 1 y tan cos 5 5 h x 1 4 5 / tan sec y hx 5 2 sec sec hx sec hx tanh x
Example 3 x 2 2 ln co t y e x 3 2 x e ln cot x 3 1 2 x x ] csc [ 2 cot x y e 2 cot x 3 ] 2 2 [ x 3 x ln cot x e
Recommend
More recommend