f or p robabilistic s eismic h azard a nalysis
play

F OR P ROBABILISTIC S EISMIC H AZARD A NALYSIS : C ASE S TUDY OF T - PowerPoint PPT Presentation

5 th IASPEI / IAEE International Symposium Effects of Surface Geology on Seismic Motion S ELECTION O F G ROUND -M OTION P REDICTION E QUATIONS F OR P ROBABILISTIC S EISMIC H AZARD A NALYSIS : C ASE S TUDY OF T AIWAN Phung-Van Bang,


  1. 5 th IASPEI / IAEE International Symposium Effects of Surface Geology on Seismic Motion S ELECTION O F G ROUND -M OTION P REDICTION E QUATIONS F OR P ROBABILISTIC S EISMIC H AZARD A NALYSIS : C ASE S TUDY OF T AIWAN Phung-Van Bang, Chin-Hsiung Loh, Norman Abrahamson Department of Civil Engineering University of California, Berkeley National Taiwan University USA Taipei, TAIWAN NTU UC-Berkeley August 15-17, 2016 Taipei, TAIWAN

  2. Background In 2015-June National Center for Research on Earthquake Engineering ( NCREE ), supported by Tai-Power Company (to response the request of NTTF 2.1 Seismic Reevaluation) , launched NUREG/CR – 6372 researches (SSHAC), in understanding and documenting lessons learned from recent PSHAs conducted at the higher SSHAC Levels. (follow the experiences of research on Diablo Canyon Nuclear Power plant) National Taiwan University 1 Department of Civil Engineering

  3. Content ◆ Introduction ◆ Selection of candidate GMPEs for PSHA ◆ Visualization technique for GMPE selection ◆ Selection of GMPE common form ◆ Visualization of model space ◆ Calculate GMPE weighting ◆ Conclusion National Taiwan University 2 Department of Civil Engineering

  4. Introduction Hazard Curve Peak Ground Acceleration (PGA) Attenuation National Taiwan University 3 Department of Civil Engineering

  5. Introduction Selection of appropriate GMPEs for PSHA 1. Need best estimate of GMPE 2. Consider range of alternative models to characterize the uncertainty in the GMPEs 1. Aleatory uncertainty: expressing random variability of amplitude about a median prediction equation,  can be handled in a PSHA by integrating over the distribution Type of uncertainty of ground-motion amplitude about the median, in GMPEs 2. Espistemic uncertainty: expressing uncertainty concerning the correct value of the median,  can be handled by considering alternative GMPEs in a logic tree format (must capture uncertainties in form & amplitude ), Sensitivity analysis of the proposed weights for GMPEs on the seismic hazard. National Taiwan University 4 Department of Civil Engineering

  6. General Feature of Candidate GMPEs Number of GMPE Magnitude Primary GMPE Regions Style of faulting Site effect Component records and Acronym Interval distance events (Abrahamson, N. A., Silva, W. J., PGA,PGV,PSA in ASK14 Global Mw (3.0-8.5) Rrup (<300km) SS,NML,REV Vs30 15750 and 326 and Kamai, R., 2014) GMRotI50 (Boore, D. M., Stewart, J. P ., PGA,PGV,PSA in BSSA14 Global Seyhan, E., and Atkinson, G. M., Mw (3.0-8.5) Rjb(<300km) U,SS,NML,REV Vs30 ~16000 and ~400 GMRotI50 2014) (Campbell, K. W., and PGA,PGV,PSA in CB14 Global Mw (3.3-8.5) Rrup (<300km) SS,NML,REV Vs30 15521 and 322 Bozorgnia, Y., 2014) GMRotI50 (Chiou, B. S-J., and Youngs, R. PGA,PGV,PSA in CY14 Global Mw (3.5-8.5) Rrup (<300km) SS,NML,REV Vs30 12444 and 300 R., 2014) GMRotI50 PGA,PGV,PSA in (Idriss, 2014) Id14 Global Mw (5-8.5) Rrup (<150km) SS,NML,REV Vs30 7135 and 160 GMRotI50 EU and (Akkar, S., Sandikkaya, M. A., PGA,PGV,PSA in ASB14 Mw (4-7.5) Rjb (<200km) SS,NML,REV Vs30 1041 and 221 and Bommer, J. J., 2014) ME GM (Bindi D., Massa M., Luzi L., EU and PGA,PGV,PSA in Ameri G., Pacor F., Puglia R., Bi14 Mw(4-7.6) Rjb (<300km) U,SS,NML,REV Vs30 2126 and 365 ME GM and Augliera, P., 2014) (Graizer, V., and Kalkan, E., Rrup PGA,PGV,PSA in GK15 Global Mw(5.0-8.0) SS,NML,REV Vs30 2583 and 47 2015) (<250Km) GM Rrup(<300km Dummy 6482 and 76 Zhao et al. 20 1 6 Zhao 1 6 Japan Mw(5.0- 7.3 ) FN,SS PGA, PSA in GM ) variable (cr), 47(mum) Turkey Özkan Kale, Sinan Akkar, U,SS,NML,RE PGA, PGV, PSA Anooshiravan Ansari, and Ka15 and Mw(4.0-8.0) Rjb(<200km) Vs30 670(Tur),528(Ir) V in GM Hossein Hamzehloo Iran Lin , P.S et al. 2011 Lin11 Taiwan Mw(5.0-7.6) Rrup(<240km) - no PGA,PSA in GM 5268 and 52 (Cauzzi, C., Faccioli, E., Vanini, PGA,PGV,PSA in Rrup Ca14 Global Mw(4.5-7.9) U,SS,NML,REV Vs30 1880 and 98 M., and Bianchini, A., 2014) GM (<150km) National Taiwan University 6 Department of Civil Engineering

  7. S election of candidate GMPE  Selected GMPEs: ASK14, BSSA14, CB14, CY14, Id14, GK15, ASB14, Bi14, Ca14 Lin11, KAAH15-Turkey, KAAH15-Iran, Zhao16 (total of 13 models) 0 0 10 10 ASK14 BSSA14 CB14 PSA(T=0.01s),g CY14 PSA(T=0.01s),g -1 10 Id14 ASB14 -1 10 Bi14 M=6; Vs30=760 m/s Ca14 -2 GK15 Sof=0 10 LLCS11 (strike slip fault) M=6; Sof=0 KAAH15-Turkey KAAH15-Iran R JB =10km; Vs30=760 m/s Zhao16 -2 -3 10 10 5 5.5 6 6.5 7 7.5 8 2 10 100 200 M R RUP ,km Use of multiple models with alternative functional forms is required to properly capture uncertainties in forms as well as in amplitude . National Taiwan University 7 Department of Civil Engineering

  8. Develop Mix Model from scenatios of candidate GMPEs  Selected GMPEs : ASK14, BSSA14, CB14, CY14, Id14, ASB14, Bi14, Ca14, GK15, Lin11, KAAH15-Turkey, KAAH15-Iran, Zhao16 (total of 13 models)   N   M R  Mix wGMPE , , i i  i 1  The scenarios for generate synthetic data: • M = 5.0, 5.2, 5.4, 5.5, 5.6, 5.8, 6.0, 6.2, 6.4, 6.5, 6.6, 6.8, 7.0, 7.2, 7.4, 7.5, 7.6, 7.8, 8.0 for strike slip and reserve faulting . • M = 5.0, 5.2, 5.4, 5.5, 5.6, 5.8, 6.0, 6.2, 6.4, 6.5, 6.6, 6.8, 7.0 for normal faulting. • Rx=-200,-150,-100,-85,-70,-65,-60,-55,-50,-45,-40,-35,-30,-28,-26,-24,-22,-20,- 18,-16,-15,-14,-12,-10,-8,-6,-5,-4,-2. (foot wall) • From fault geometry, Rrup, and Rjb can be calculated . • Vs30 = 760 m/s. • Dip =90 o for strike slip, and dip = 45 o for normal and reverse faulting events . • Other parameters are set to default (Ztor, W,...) National Taiwan University 9 Department of Civil Engineering

  9. Reference to the set of 13GMPEs  Add the reference to the set of 13GMPEs:  Mix Model (average of all models) : N     wGMPE M R  Mix , , i i  i 1  Up-Down Scaled models :    Mix log , with = 0.67, 0.8, 1.25, 1.5 S--, S-,S+,S++  Magnitude Scaled models :       6.5 , with = -0.4, -0.2, 0.2, 0.4 M--, M-, M+, M++ Mix M  Distance Scaled models:       Mix R 70 , with = -0.01, -0.005, 0.005, 0.01 R--, R-, R+, R++ National Taiwan University 8 Department of Civil Engineering

  10. Reference to the set of 13GMPEs  Add the reference to the set of 13GMPEs:  Mix Model (average of all models) : N     wGMPE M R  Mix , , i i  i 1  Up-Down Scaled models :    Mix log , with = 0.67, 0.8, 1.25, 1.5 S--, S-,S+,S++  Magnitude Scaled models :       6.5 , with = -0.4, -0.2, 0.2, 0.4 M--, M-, M+, M++ Mix M  Distance Scaled models:       Mix R 70 , with = -0.01, -0.005, 0.005, 0.01 R--, R-, R+, R++ National Taiwan University 8 Department of Civil Engineering

  11. Reference to the set of 13GMPEs 0 10 Up-Down Scaled models lnPSA(T=0.01) -1 10 Mix -2 S-- 10 S- M=6.5, sof=0, Vs30=760m/s S+ S++ -3 10 1 2 10 10 R JB ,km,km 0 0 10 10 Distance Scaled models Magnitude Scaled models lnPSA(T=0.01) lnPSA(T=0.01) -1 -1 10 10 -2 -2 10 10 M=6.5, sof=0, Vs30=760m/s R JB =70km, sof=0, Vs30=760m/s -3 -3 10 10 1 2 10 10 5.5 6 6.5 7 7.5 8 M R JB ,km National Taiwan University 10 Department of Civil Engineering

  12. Generate Sammon Map (13 Candidate GMPEs) + (13 Reference models: mix & scale models) M = 5.0, 5.2, …, 7.8, 8.0 (for SS & NF) GMPE i = f(M, R) Rx=-200,-150, …., -4,-2. (foot wall) The simplest technique for dimensionality reduction is a straightforward linear projection , for example, as in PCA — principal component analysis. (PCA simply maximizes variance) Non-linear projections may therefore be desirable when analyzing such data. Sammon Mapping: To minimize the differences between corresponding inter-point distances in the dimension space National Taiwan University 11 Department of Civil Engineering

  13. Visualization technique-GMPEs Calculation  Combined the embedded GMPEs Es and the Mix Model l & Scaled led Models ls into the [ X ] matrix considered to be N-dimensional space   ASK 14 ( M , R )    μ       BSSA 14 ( M , R ) GMPE 13 xN   X       26 xN μ      μ  Scaled 13 xN GMPE 13 xN   CY 14 ( M , R )       Lin 11 ( M , R ) 13 xN    T   XX              Mix X ~ ,    pca 1 2  1 xN  2 D pca   N 1 [ S ]    μ 4 xN [ ]   scales 13 xN Construct the initial [ M ] 4 xN   PCA-based map   [ R ]   4 xN x y 13 xN 1 1     x y  2 2   [ X ]  2 D PCA     2D visualization   (preliminary)   x y 26 26 National Taiwan University 12 Department of Civil Engineering

Recommend


More recommend