extremal rays of the cone of betti tables of complete
play

extremal rays of the cone of betti tables of complete intersections - PowerPoint PPT Presentation

extremal rays of the cone of betti tables of complete intersections Alex Sutherland Cole Hawkins Mike Annunziata December 15, 2015 the basics what in tarnation is a betti diagram?! Modules Betti diagrams 2 complete intersections


  1. extremal rays of the cone of betti tables of complete intersections Alex Sutherland Cole Hawkins Mike Annunziata December 15, 2015

  2. the basics

  3. what in tarnation is a betti diagram?! Modules Betti diagrams 2

  4. complete intersections Polynomial ring in n variables: k [ x , y , z ] ( n = 3 ) Mod out by pure powers ideal: I = ( x a , y b , z c ) WLOG a ≤ b ≤ c Complete intersection: k [ x , y , z ] I 3

  5. what is β i , j ? β 0 , 0 = 1 β 1 , j = # of generators of the ideal of degree j β i , j = # collections of i generators where degrees sum to j 4

  6. 1 1 1 2 2 3 3 1 2 2 3 3 4 1 3 2 4 3 5 1 4 2 5 3 6 1 5 2 6 3 7 1 6 2 7 3 8 Remember of generators of the ideal of degree j 1 j example! ( k [ x , y , z ] ) β ( 2 , 3 , 3 ) := β ( x 2 , y 3 , z 3 ) 5

  7. Remember of generators of the ideal of degree j 1 j example! ( k [ x , y , z ] ) β ( 2 , 3 , 3 ) := β ( x 2 , y 3 , z 3 ) 1  β 1 , 1 β 2 , 2 β 3 , 3  − β 1 , 2 β 2 , 3 β 3 , 4     − β 1 , 3 β 2 , 4 β 3 , 5      − β 1 , 4 β 2 , 5 β 3 , 6      − β 1 , 5 β 2 , 6 β 3 , 7   − β 1 , 6 β 2 , 7 β 3 , 8 5

  8. example! ( k [ x , y , z ] ) β ( 2 , 3 , 3 ) := β ( x 2 , y 3 , z 3 ) 1  β 1 , 1 β 2 , 2 β 3 , 3  − β 1 , 2 β 2 , 3 β 3 , 4     − β 1 , 3 β 2 , 4 β 3 , 5      − β 1 , 4 β 2 , 5 β 3 , 6      − β 1 , 5 β 2 , 6 β 3 , 7   − β 1 , 6 β 2 , 7 β 3 , 8 Remember β 1 , j = # of generators of the ideal of degree j 5

  9. example! ( ) k [ x , y , z ] β ( 2 , 3 , 3 ) := β ( x 2 , y 3 , z 3 ) 1 − β 2 , 2 β 3 , 3   1 − β 2 , 3 β 3 , 4     2 − β 2 , 4 β 3 , 5      − − β 2 , 5 β 3 , 6      − − β 2 , 6 β 3 , 7   − − β 2 , 7 β 3 , 8 β 2 , 3 = # of pairs of generators of the ideal whose degrees sum to 3 6

  10. example! ( k [ x , y , z ] ) β ( 2 , 3 , 3 ) := β ( x 2 , y 3 , z 3 ) 1  − − β 3 , 3  1 − − β 3 , 4    2  − − β 3 , 5     2 − − β 3 , 6     1   − − β 3 , 7   − − − β 3 , 8 6

  11. example! ( k [ x , y , z ] ) β ( 2 , 3 , 3 ) := β ( x 2 , y 3 , z 3 ) 1  − − −  1 − − −    2  − − −     2 − − −     1   − − −   1 − − − 7

  12. Consider the cone l k a k a k B r k r k 0 l 0 1 n k k 1 rational cones Embed Betti diagrams in vector space V = ⊕ ⊕ Q i ∈ Z ≥ 0 j ∈ Z 8

  13. rational cones Embed Betti diagrams in vector space V = ⊕ ⊕ Q i ∈ Z ≥ 0 j ∈ Z Consider the cone { l } r k β ( k ) ( a ( k ) 1 , · · · , a ( k ) � r k ∈ Q ≥ 0 , l ∈ Z ≥ 0 B = � ∑ n k ) k = 1 8

  14. rational cones 9

  15. rational cones 9

  16. goals Find extremal rays of { l } r k β ( k ) ( a ( k ) 1 , · · · , a ( k ) � r k ∈ Q ≥ 0 , l ∈ Z ≥ 0 B = � ∑ n k ) k = 1 Come up with a partial order on these extremal rays 10

  17. the theorem

  18. main theorem statement Conjecture: The β ( k ) ( a ( k ) 1 , · · · , a ( k ) n k ) form the set of extremal rays for { l } r k β ( k ) ( a ( k ) 1 , · · · , a ( k ) � r k ∈ Q ≥ 0 , l ∈ Z ≥ 0 the cone B = � ∑ n k ) k = 1 12

  19. method of proof l r k β ( k ) ( a ( k ) 1 , · · · , a ( k ) Show β ( a 1 , · · · , a c ) ̸ = n k ) for distinct β ( k ) ∑ k = 1 13

  20. 1 1 2 2 1 1 reduction zero Simply, β ( k ) 0 , 0 = 1 for each k. 14

  21. reduction zero Simply, β ( k ) 0 , 0 = 1 for each k. 1  − − −  1 − − −    2  − − −     2 − − −     1   − − −   1 − − − 14

  22. k a k a k 1. For each n k , n k n 1 2. For each k, a k a k a 1 a n n k 1 reductions one and two For each β ( k ) , the bottom right 1 lands in the same place: 15

  23. 2. For each k, a k a k a 1 a n n k 1 reductions one and two For each β ( k ) , the bottom right 1 lands in the same place: 1. For each β ( k ) ( a ( k ) 1 , · · · , a ( k ) n k ) , n k = n 15

  24. reductions one and two For each β ( k ) , the bottom right 1 lands in the same place: 1. For each β ( k ) ( a ( k ) 1 , · · · , a ( k ) n k ) , n k = n 2. For each k, a ( k ) + · · · + a ( k ) n k = a 1 + · · · + a n 1 15

  25. 1 1 1 1 1 1 2 1 1 3 2 + = 2 2 1 3 2 1 1 2 1 1 2 reduction one example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 ) : 16

  26. 1 1 1 1 1 1 3 2 + = 2 1 3 2 1 2 1 2 reduction one example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 ) : 1  − − −  1 − − −    2  − − −     2 − − −     1   − − −   1 − − − 16

  27. 1 1 3 2 = 2 3 2 1 2 1 2 reduction one example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 ) : 1 1  − − −   − − −  1 1 − − − − − −      2   1 1  − − − − −     +     2 1 − − − − − −         1     − − − − − − −     1 − − − − − − − 16

  28. reduction one example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 ) : 1 1 1  − − −   − − −   − − −  1 1 1 − − − − − − − − −        2   1 1   3 / 2  − − − − − − − −       + = 2       2 1 3 / 2 − − − − − − − − −             1 1 / 2       − − − − − − − − − −       1 1 / 2 − − − − − − − − − − 16

  29. 1 1 1 1 1 1 2 1 3 2 + = 2 2 1 1 1 2 3 2 1 1 1 1 1 1 2 1 2 1 1 2 reduction two example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 , 4 ) : 17

  30. 1 1 1 1 1 3 2 + = 2 1 1 1 2 3 2 1 1 1 1 2 1 2 1 1 2 reduction two example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 , 4 ) : 1   − − − 1 − − −     2  − − −    2   − − −    1  − − −     1 − − −     − − − − 17

  31. 1 1 3 2 = 2 1 2 3 2 1 1 2 1 2 1 2 reduction two example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 , 4 ) : 1 1     − − − − − − 1 1 − − − − − −         2 1  − − −   − − −      + 2 1 1     − − − − −      1   1  − − − − − −         1 1 − − − − − −         1 − − − − − − − 17

  32. reduction two example Take β ( 2 , 3 , 3 ) and β ( 2 , 3 , 4 ) : 1 1 1       − − − − − − − − − 1 1 1 − − − − − − − − −             2 1 3 / 2  − − −   − − −   − − −        + = 2 2 1 1 1 / 2 3 / 2       − − − − − − −        1   1   1  − − − − − − − − −             1 1 1 / 2 1 / 2 − − − − − − − −             1 1 / 2 − − − − − − − − − − 17

  33. 0. The top left entry of our Betti table must be a 1. 1. Every summed Betti table must have the same number of generators. 2. Degrees of generators of complete intersections sum to the same number. reductions overview 18

  34. 1. Every summed Betti table must have the same number of generators. 2. Degrees of generators of complete intersections sum to the same number. reductions overview 0. The top left entry of our Betti table must be a 1. 18

  35. 2. Degrees of generators of complete intersections sum to the same number. reductions overview 0. The top left entry of our Betti table must be a 1. 1. Every summed Betti table must have the same number of generators. 18

  36. reductions overview 0. The top left entry of our Betti table must be a 1. 1. Every summed Betti table must have the same number of generators. 2. Degrees of generators of complete intersections sum to the same number. 18

  37. proof

  38. where are we now? Main theorem proved for n = 2 , n = 3. It remains to induct on n. 20

  39. Note, then 0, the Betti table with all 0 entries. As an example, consider 2 3 3 . Then, 1 1 1 1 2 2 and 2 2 1 1 1 1 additive inverses Given a Betti Table β , define − β by: ( − β ) i , j := − ( β i , j ) 21

Recommend


More recommend