explore high energy universe
play

Explore High Energy Universe with IceCube observation Extreme - PowerPoint PPT Presentation

Explore High Energy Universe with IceCube observation Extreme Astrophysics Chiba University Shigeru Yoshida 2009/9/5 Science of astrophysics Detector size Origin of cosmic rays Hadronic vs. leptonic signatures Supernovae


  1. Explore High Energy Universe with IceCube ν observation Extreme Astrophysics Chiba University Shigeru Yoshida 2009/9/5

  2. Science of ν astrophysics Detector size Origin of cosmic rays � Hadronic vs. leptonic signatures � Supernovae Limitation at high energies: Oscillations Fast decreasing Limitation at low Dark matter (neutralinos) fluxes E -2 , E -3 energies: -Short muon range Astrophysical neutrinos -Low light yield GZK, Topological Defects - 40 K (in water) MeV GeV TeV PeV EeV Detector density Other physics: monopoles, etc... 2009/9/5

  3. enveloping black hole black hole radiation 2009/9/5

  4. 2009/9/5

  5. Connections to γ and CR p γ (p,n) π 2 γ Fermi observations !! μ ν e ν ν Cosmic Ray observations! 2009/9/5

  6. Cosmic Ray and Neutrino Sources Candidate sources Cosmic rays (accelerators): Cosmic ray related: – SN remnants – Active Galactic Nuclei – Gamma Ray Bursts Other: – Dark Matter – Exotics knee 1 part m -2 yr -1 Guaranteed sources (known targets): • Atmospheric neutrinos (from π and K decay) Ankle • Galactic plane: CR interacting with ISM, 1 part km -2 yr -1 concentrated on the disk • GZK (cosmogenic neutrinos) 2009/9/5 � Δ + � n π + (p π 0 ) γ � p γ 6

  7. Neutrino Fluxes Overview MeV energy neutrino astrophysics High energy neutrino astronomy: Small fluxes, Need large detectors, Note wide energy range 2009/9/5 7

  8. Extremely-high Energy Universe 宇宙が産み出す ( 素 ) 粒子 のエネルギーには上限があるのか? Sky @ E = 5x10 10 GeV 2009/9/5 10 12 GeV

  9. Extremely-high Energy Universe 宇宙が産み出す ( 素 ) 粒子 のエネルギーには上限があるのか? CMB 10 -12 GeV ± ± ± γ → π → μ + ν → + ν p e ' s 2 . 7 K 10 11 GeV “GZK” ν Greisen – Zatsepin – Kuzmin Effect 2009/9/5 10 12 GeV

  10. Why GZK ν ? γ γ → → π π ± ± + + p p X X 超銀河団 超銀河団 2 2 . . 7 7 K K GZK GZK cutoff cutoff → → μ μ ± ± + + ν ν → → ± ± + + ν ν e e ' ' s s γ・陽子 γ・陽子 Non-Observable から見た から見た Space by γ and 宇宙の死角 宇宙の死角 Cosmic Nuclei γ + γ + γ + γ 2.7K γ 2.7K γ 2.7K e e e γ γ γ + γ + γ + γ 2.7K 2.7K 2.7K + + + + + + e + e + e + + e + e + e e - e - e - - - - SDSS SDSS Distant, younger universe 遠く・若い宇宙 遠く・若い宇宙 銀河直径 銀河直径 超銀河団直径 超銀河団直径 1 0 万光年 1 0 万光年 (Our Galaxy) 10 (Super Cluster)

  11. High-Energy Neutrino Astrophysics Particle Astrophysics • 宇宙線の起源 様々な領域の • エネルギー収支 クロスオーバー • 深宇宙探査 ν 非加速器物理 “新”物理現象探索 • 暗黒物質 • ローレンツ不変性の破れ • 相対論的モノポール • ブラックホール蒸発 • ニュートリノ核子相互作用 2009/9/5

  12. やっている人間もクロスオーバー IceCube IceCube 以前に従事したプロジェクト BaBar, DELPHI, SSC, SNO STAR, OPERA HiRes, MAGIC,…., 宇宙線屋 高エネ屋 原子核屋 天文屋 2009/9/5

  13. IceCube status • Total of 59 strings and 118 IceTop tanks � over two thirds complete! • Completion with 86 strings: January 2011 • Detector is taking data during construction phase. 2009/9/5 A. Karle, UW ‐ Madison 13

  14. IceCube 2006-2007: 13 strings deployed IceTop 2007 configuration - 22 strings Air shower detector - 52 surface tanks 80 pairs of ice 2005-2006: 8 strings Cherenkov tanks Threshold ~ 300 TeV 2004-2005 : 1 string 1450m InIce AMANDA-II Planned 80 strings of 60 19 strings optical modules each 677 modules 17 m between modules AMANDA now 125 m string separation operating as part 2450m of IceCube 2007/08: added 18 strings Fujihara Seminar 2009 14 Completion by 2011.

  15. The IceCube Collaboration Germany: Sweden: DESY ‐ Zeuthen USA: Uppsala Universitet Universität Mainz Stockholm Universitet Universität Dortmund Bartol Research Institute, Delaware Universität Wuppertal University of California, Berkeley UK: Humboldt Universität University of California, Irvine MPI Heidelberg Oxford University Pennsylvania State University RWTH Aachen Clark ‐ Atlanta University Netherlands: Ohio State University Georgia Tech Utrecht University University of Maryland Belgium: Japan: University of Alabama, Tuscaloosa Switzerland: Université Libre de Bruxelles University of Wisconsin ‐ Madison Chiba University EPFL Vrije Universiteit Brussel University of Wisconsin ‐ River Falls Universiteit Gent Lawrence Berkeley National Lab. Université de Mons ‐ Hainaut University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage New Zealand: University of Canterbury 33 institutions, ~250 members 2009/9/5 http://icecube.wisc.edu

  16. Our Events 2009/9/5

  17. 2009/9/5 18

  18. Neutrino Effective Areas Area at 100 TeV (1TeV) AMANDA ‐ II: 3m 2 (0.005) IceCube 86: 100m 2 (0.3) (trigger) Deep Core lowers threshold from 100 GeV (trigger) to 10 GeV. Effective area for ν μ Strong rise with energy: – – Increase of muon range with energy up to PeV 2009/9/5

  19. Neutrino Effective Areas (trigger) (trigger) Dark Matter • ν • GZK ν from CMB Point Source • Diffuse AGN ν • Monopole • Atomospheric ν • Blackhole evap. 2009/9/5

  20. Neutrino Fluxes and Limits 2009/9/5

  21. Atmospheric neutrinos Atmospheric ν 2009/9/5

  22. Atmospheric ν • IceCube 22 string analysis • 4492 neutrino events at high purity (>95%) 2009/9/5

  23. Very High Energy (TeV-PeV) ν Astrophysical sources: Diffuse, Point sources, GRBs, AGN 2009/9/5

  24. Search for point sources - 40-string(6month) all-sky results Preliminary 175.5 days livetime, 17777 events: 6796 up-going, 10981 down-going 2009/9/5 26

  25. Dark Matter Search for indirect dark matter: Energy range: 10 GeV to few TeV 2009/9/5

  26. Search for dark matter, example: in sun � neutrino flux at Earth WIMPs • annihilating in the gravity well of the Sun q q • indirect detection ~ ~ χ χ → → → ν L l l μ ± W , Z , H 2009/9/5

  27. Dark Matter search: neutrinos from WIMP annihilation in the sun q q ~ ~ χ χ → → → ν L l l μ ± W , Z , H IceCube 22 limits AMANDA 7 year limits (PRL 102, 201302 (2009)) (this conference) IceCube 86 with Deep Core Sensitivity (prel.) � Deep core enhancement under construction will greatly � Deep core enhancement under construction will greatly enhance sensitivity. enhance sensitivity. 2009/9/5

  28. IceCube Deep Core � Add 6 strings at small spacing, all high quantum � Add 6 strings at small spacing, all high quantum efficiency PMT efficiency PMT � Lower energy threshold: � Lower energy threshold: Open window between 10 and 100 GeV Open window between 10 and 100 GeV � High background rejection using surrounding � High background rejection using surrounding µ IceCube strings as Veto: IceCube strings as Veto: µ 2009/9/5

  29. EHE (EeV and higher) Astrophysical sources: 100 PeV to 10 EeV AGN, Cosmogenic neutrinos (GZK) IC22 Event rates for Flux: Engel, Seckel, Stanev, 2001) (Factor of 10 higher still allowed by current limits, including IceCube) • IceCube ‐ 22strings, through going, 240 days: ~0.1 events/yr • IC86, total: o(0.5) event/yr 10 x 10km 2 radio array: • 2009/9/5 o(10) events/yr

  30. region A: -250 < CoGZ < -50 m and CoGZ > 50 m region B: CoGZ < -250 m and -50 < CoGZ < 50m (Signal MC) (Data) (Background MC) (Background MC) (Signal MC) (Data) 2009/9/5

  31. Extremely-High Energy ν limits with 241 days observation in 2007 We will have more observation time with more than twice bigger volume Stats will be increased by x5 before 2011 33

  32. Extremely-High Energy ν limits with 5 year full IceCube 34

  33. The radio detection The Askaryan effect Conditions for coherent radio emission 1. Net exccess charge 2. λ obs > shower dimensions 1 N ~ N γ e λ 2 1 Coherence!! ( ) Δ 2 W ~ N q λ 2 e 2009/9/5

  34. Calibration of the Askaryan effect @SLAC 10 9 x 28.5 GeV e 2x10 10 e + e - in the target ice Anita instruments 2009/9/5 Gorham et al hep-ex/0611008

  35. Askaryan radio array at the South Pole • Large Radio array of short strings, • Depth: 200m • Spacing: ~0.5 to 1km • Coverage: 100km 2 • Low cost (shallow holes, antennas) • Large enough to reliably detect GZK neutrino flux: > 250km 3 viewed target volume • O(10) events per year 3 D observation for good event reconstruction and background rejection of interactions km deep in 2009/9/5 the ice sheet.

  36. Askaryan Radio Array IceCube Extension Construction starts at 2011 - Science 2014- Log( φ ν (E)E [km -2 yr -1 sr -1 ]) IceCube 3yrs ARA 3yrs Log(E ν [eV]) 2009/9/5

  37. Explore Particle Physics ν Flux measurement = Ω ⊗ σ ⊗ φ − σ Rate V T N A (E ) exp( N X) ν A Interaction Absorption Detector+ Geometry Unknown FLUX 2009/9/5

Recommend


More recommend