excitation spectrum of interacting bosons in the mean
play

EXCITATION SPECTRUM OF INTERACTING BOSONS IN THE MEAN FIELD INFINITE - PowerPoint PPT Presentation

EXCITATION SPECTRUM OF INTERACTING BOSONS IN THE MEAN FIELD INFINITE VOLUME LIMIT JAN DEREZI NSKI Dept. of Math. Methods in Phys., Faculty of Physics, University of Warsaw Joint work with MARCIN NAPI ORKOWSKI We show that low lying


  1. EXCITATION SPECTRUM OF INTERACTING BOSONS IN THE MEAN FIELD INFINITE VOLUME LIMIT JAN DEREZI´ NSKI Dept. of Math. Methods in Phys., Faculty of Physics, University of Warsaw Joint work with MARCIN NAPI´ ORKOWSKI

  2. We show that low lying excitation spectrum of N -body bosonic Schr¨ odinger Hamiltonians with repulsive interaction is approximately given by the Bogoliubov approximation. We consider the limit N → ∞ , weak coupling and large density. We allow for an ar- bitrarily large size of a box provided that it does not grow too fast with N .

  3. We start with a potential that is a real function v on R d such that v (x) = v ( − x) and v ∈ L 1 ( R d ) , v ∈ L 1 ( R d ) , ˆ v (x) ≥ 0 , x ∈ R d , v (p) ≥ 0 , p ∈ R d . ˆ Then we replace the original v by the periodized potential v L (x) = 1 � e ipx ˆ v (p) , L d p ∈ (2 π/L ) Z d which is well defined on the torus [ − L/ 2 , L/ 2[ d .

  4. We use the symmetric N -particle Hilbert space �� [ − L/ 2 , L/ 2[ d � N � L 2 s and the periodic boundary conditions indicated by L . Momentum N � P L i ∂ L N := − x i . i =1 Hamiltonian N i + L d � � H L ∆ L v L (x i − x j ) . N = − N i =1 1 ≤ i<j ≤ N In the sequel, we drop the superscript L .

  5. L Z d and H N P N = P N H N . Hence Note that spec P N = 2 π H N = ⊕ H N (k) . k ∈ spec P N We can define the energy-momentum spectrum spec ( H N , P N ) . We will denote by E N the ground state energy of H N . By the excitation spectrum we will mean spec ( H N − E N , P N ) .

  6. We introduce the Bogoliubov energy E Bog := − 1 � | p | 2 + ˆ � | p | 2 + 2ˆ � � v (p) − | p | v (p) 2 p ∈ 2 π L Z d \{ 0 } and the Bogoliubov dispersion relation | p | 2 + 2ˆ � e p = | p | v (p) .

  7. Bogoliubov Hamiltonian � e p a † H Bog := E Bog + p a p , p � =0 Bogoliubov momentum � p a † P Bog := p a p , p � =0 Clearly, H Bog P Bog = P Bog H Bog . Above, a † p and a p are bosonic creation/annihilation operators on � �� L 2 � the bosonic Fock space Γ s spec ( P N ) \ 0 .

  8. We would like to show that the excitation spectrum of H N is well approximated by the excitation spectrum of the Bogoliubov Hamiltonian. In the examples below we ilustrate that the latter has a special shape involving a positive critical velocity, which according to the Landau criterion is responsible for superfluidity.

  9. v 1 (p) = e − p 2 / 5 ˆ 10

  10. Excitation spectrum of 1-dimensional homogeneous Bose gas with potential v 1 in the Bogoliubov approximation.

  11. v 2 (p) = 15e − p 2 / 2 ˆ 2

  12. Excitation spectrum of 1-dimensional homogeneous Bose gas with potential v 2 in the Bogoliubov approximation.

  13. Let A be a bounded from below self-adjoint operator with only dis- crete spectrum. We define − → sp( A ) := ( a 1 , a 2 , . . . ) , where a 1 , a 2 , . . . are the eigenvalues of A in the increasing order. If dim H = n , then we set a n +1 = a n +2 = · · · = ∞ .

  14. Excitation energies of the N -body Hamiltonian. If p ∈ 2 π L Z d \{ 0 } , set := − → K 1 N (p) , K 2 � � � � N (p) , . . . sp H N (p) − E N . The lowest eigenvalue of H N (0) − E N is 0 by general arguments. Set := − → 0 , K 1 N (0) , K 2 � � � � N (0) , . . . sp H N (0) − E N .

  15. Bogoliubov excitation energies. If p ∈ 2 π L Z d \{ 0 } , set := − → K 1 Bog (p) , K 2 H L Bog (p) − E L � � � � Bog (p) , . . . sp . Bog The lowest eigenvalue of H Bog (0) − E Bog is obviously 0 . Set := − → 0 , K 1 Bog (0) , K 2 H L Bog (0) − E L � � � � Bog (0) , . . . sp . Bog

  16. L Z d the Bogoliubov excitation energies are given by For any p ∈ 2 π j e k i : k 1 , . . . , k j ∈ 2 π � � � L Z d \{ 0 } , k 1 + · · · +k j = p , j = 1 , 2 , . . . , i =1 in the increasing order.

  17. Upper bound Let c > 0 . Then there exists C such that if L 2 d +2 ≤ cN, then E N ≥ 1 v (0)( N − 1) + E Bog − CN − 1 / 2 L 2 d +3 ; 2ˆ If in addition K j N (p) ≤ cNL − d − 2 , then N (p) ≥ 1 E N + K j v (0)( N − 1) + E Bog + K j 2ˆ Bog (p) N (p) + L d � 3 / 2 . K j − CN − 1 / 2 L d/ 2+3 �

  18. Lower bound. Let c > 0 . Then there exists c 1 > 0 and C such that if L 2 d +1 ≤ cN , L d +1 ≤ c 1 N, then E N ≤ 1 v (0)( N − 1) + E Bog + CN − 1 / 2 L 2 d +3 / 2 ; 2ˆ Bog (p) ≤ cNL − d − 2 and K j If in addition K j Bog (p) ≤ c 1 NL − 2 , then N (p) ≤ 1 E N + K j v (0)( N − 1) + E Bog + K j 2ˆ Bog (p) + CN − 1 / 2 L d/ 2+3 ( K j Bog (p) + L d − 1 ) 3 / 2 .

  19. Special case of this theorem with L = 1 was proven by R. Seiringer. Mimicking his proof gives big error terms for large L : they are of the order N − 1 / 2 exp( L d/ 2 ) . To get better error estimates we need to use additional ideas.

  20. Bosonic Fock space l 2 � 2 π ∞ � L Z d �� H := N =0 H N = Γ s ⊕ . Hamiltonian in second quantized notation p a p + 1 ∞ v (k) a † p+k a † � � p 2 a † H := N =0 H N = ⊕ ˆ q − k a q a p . 2 N p p , q , k Number of particles in condensate N 0 = a † 0 a 0 . Number of particles outside of condensate N > = � a † p a p . p � =0

  21. The exponential property of Fock spaces gives l 2 � 2 π � �� L Z d \{ 0 } H ≃ Γ s ( C ) ⊗ Γ s . Embed the space of zero modes Γ s ( C ) = l 2 ( { 0 , 1 , . . . } ) in a larger space l 2 ( Z ) . Thus we obtain the extended Hilbert space l 2 � 2 π H ext := l 2 ( Z ) ⊗ Γ s � �� L Z d \{ 0 } .

  22. The operator N 0 extends to an operator N ext satisfying 0 l [0 , ∞ [ ( N ext H = Ran1 0 ) . N for the subspace of H ext corresponding If N ∈ Z , we will write H ext to N > + N ext = N . 0

  23. We have also a unitary operator U | n 0 � ⊗ Ψ > = | n 0 − 1 � ⊗ Ψ > . We now define for p � = 0 the following operator on H ext : b p := a p U † . Operators b p and b † q satisfy the same CCR as a p and a † q .

  24. Estimating Hamiltonian on H N H N,ǫ := 1 | p | 2 + ˆ � a † � � 2ˆ v (0)( N − 1) + v (p) p a p p � =0 + 1 � � � a † 0 a † p a † 0 a p a − p + a † v (p) ˆ − p a 0 a 0 2 N p � =0 − 1 v (p) + ˆ v (0) p a p N > + ˆ v (0) � a † 2 N N > � � ˆ N 2 p � =0 + ǫ p a p N 0 + +(1 + ǫ − 1 ) 1 2 N v (0) L d N > ( N > − 1) � a † � � v (p) + ˆ ˆ v (0) N p � =0 H N ≥ H N, − ǫ , 0 < ǫ ≤ 1; H N ≤ H N,ǫ , 0 < ǫ.

  25. Extended estimating Hamiltonian on H ext N N,ǫ := 1 | p | 2 + ˆ � H ext b † � � 2ˆ v (0)( N − 1) + v (p) p b p p � =0 �� ( N ext − 1) N ext +1 � � 0 0 v (p) ˆ b p b − p + hc 2 N p � =0 − 1 v (p) + ˆ v (0) p b p N > + ˆ v (0) � b † 2 N N > � � ˆ N 2 p � =0 + ǫ � b † p b p N ext � � v (p) + ˆ ˆ v (0) 0 N p � =0 +(1 + ǫ − 1 ) 1 2 N v (0) L d N > ( N > − 1) . H ext N,ǫ preserves H N and restricted to H N coincides with H N,ǫ .

  26. p b p + 1 | p | 2 + ˆ � � � � p b † b † b p b − p + b † � � v (p) v (p) ˆ . − p 2 p � =0 p � =0 preserves H ext N . Its restriction to H ext N will be denoted H Bog ,N . Ap- plying an appropriate Bogoliubov transformation we see that H Bog ,N is unitarily equivalent to H Bog , which we introduced before.

  27. N,ǫ = 1 H ext 2ˆ v (0)( N − 1) + H Bog ,N + R N,ǫ , ��� ( N ext − 1) N ext R N,ǫ := 1 � � � 0 0 v (p) ˆ − 1 b p b − p + hc 2 N p � =0 − 1 v (p) + ˆ v (0) p b p N > + ˆ v (0) � b † 2 N N > � � ˆ N 2 p � =0 + ǫ + (1 + ǫ − 1 ) 1 2 N v (0) L d N > ( N > − 1) . � b † p b p N ext � � v (p) + ˆ ˆ v (0) 0 N p � =0

  28. Consequence of the min-max principle: A ≤ B implies − → sp( A ) ≤ − → sp( B ) . Rayleigh-Ritz principle: � − → sp( A ) ≤ − → � � sp P K AP K . � � K

  29. Proof of lower bound For brevity set l N 1 κ := 1 l [0 ,κ ] ( H N − E N ) . For 0 < ǫ ≤ 1 , � 1 � l N l N l N l N 1 κ H N 1 κ ≥ 1 2ˆ v (0)( N − 1) + H Bog ,N + R N, − ǫ 1 κ . κ Hence, ≥ 1 − → v (0)( N − 1) + − → � � � � l N l N sp 1 κ H N 1 2ˆ sp H Bog − � R N, − ǫ � . κ

  30. Suppose now that G is a smooth nonnegative function on [0 , ∞ [ such that  if s ∈ [0 , 1  1 , 3 ]   G ( s ) =  0 , if s ∈ [1 , ∞ [ .   l Bog For brevity, we set 1 := 1 l [0 ,κ ] ( H Bog ,N − E Bog ) . We define κ � − 1 / 2 1 l Bog G ( N > /N ) 2 1 l Bog l Bog G ( N > /N ) . � Z κ := 1 κ κ κ l Bog Clearly, Z κ is a partial isometry with initial space Ran( G ( N > /N )1 ) κ l Bog and final space Ran(1 ) . κ

  31. � � � � → − sp H N ≤ − → � = − → � Z † κ Z κ H N Z † Z κ H N Z † sp κ Z κ sp . � � κ Ran Z † l Bog � � Ran1 κ κ Z κ H N Z † κ ≤ Z κ H N,ǫ Z † κ = 1 l Bog l Bog 2ˆ v (0)( N − 1)1 + H Bog 1 κ κ l Bog + Z κ ( H Bog − E Bog ) Z † κ − ( H Bog − E Bog )1 κ + Z κ R N,ǫ Z † κ .

  32. Therefore, − → sp( H N ) ≤ Z κ H N,ǫ Z † κ = 1 v (0)( N − 1) + − → � � l Bog 2ˆ sp H Bog 1 κ � � � Z κ ( H Bog − E Bog ) Z † l Bog + κ − ( H Bog − E Bog )1 � � κ � � � � Z κ R N,ǫ Z † + � . � � κ

Recommend


More recommend