SET 3 Chapter 6 Trigonometry لاتاـثلـثم Chapter 6: Trigonometry 1
6.1 Angles, Rotations and Degrees Measures تاـجردلاب سايقلا و نارودلا و اـياوزلا Chapter 6 : Trigonometry 2
Example 1. Solution: Chapter 6: Trigonometry 3
Example 2. Solution: Chapter 6 : Trigonometry 4
6. 2 Radian Measures يرـطق فصنلا سايقلا Chapter 6: Trigonometry 5
Example 3 . Solution: Chapter 6 : Trigonometry 6
Example 4. Solution: Chapter 6: Trigonometry 7
Example 5. Solution: Example 6. Solution: 6.3 Arc Length and Central Angles ةـيزكرملا ةـيوازـلا و سوقلا لوط Chapter 6 : Trigonometry 8
Example 7. Solution : Example 8. Solution: Chapter 6: Trigonometry 9
6. 4 The Trigonometric Ratios ةـيـثلـثملا بـسنلا Chapter 6 : Trigonometry 10
Example 9. Solution: Evaluating Trigonometric Ratios of Any Angles Chapter 6: Trigonometry 11
Scientific calculators are usually used to evaluate trigonometric ratios of any angles. The following examples were solved using a scientific calculator. Example 1 0 . Evaluate sin 37 1 5 4 4 rounded to 4 decimal places. 15 44 Solution: sin 37 1 5 4 4 sin 37 60 3600 sin 37 . 26 2 0 . 6055 Note that scientific calculators allow entering angles in the form of DMS, and therefore using this feature is easier than dividing the minutes part of the angle by 60 and the seconds part by 3600 and then adding the tow results to the degrees part. Example 11. Evaluate the following rounded to 3 decimal places: (a) sin 124 3 9 5 0 (b) cos 87 2 5 4 3 (c) tan 61 3 2 5 4 Solution: (a) sin 124 3 9 5 0 0 . 823 (b) cos 87 2 5 4 3 0 . 045 (c) tan 61 3 2 5 4 1 . 845 Example 12. Evaluate the following rounded to 3 decimal places: (a) sec 48 1 1 3 5 (b) csc 76 5 2 8 (c) cot 9 1 0 1 3 Solution: Recalling that: 1 1 1 , sec csc and cot cos sin tan 1 Then, (a) sec 48 1 1 3 5 1 . 500 cos 48 1 1 3 5 1 (b) csc 76 5 2 8 1 . 027 sin 76 5 2 8 1 (c) cot 9 1 0 1 3 6 . 195 tan 9 1 0 1 3 Example 13. Evaluate the following correct to 4 decimal places: sin (b) cos (c) tan 3 9 5 (a) 7 16 11 3 Solution: (a) sin 0 . 9749 7 9 (b) cos 0 . 1951 16 5 (c) tan 6 . 9551 11 Chapter 6 : Trigonometry 12
Example 14. Evaluate the following correct to 3 decimal places: sec (b) csc (c) 4 5 12 (a) cot 9 12 21 4 1 Solution: (a) sec 5 . 759 4 9 cos 9 5 1 (b) csc 1 . 035 5 12 sin 12 12 1 (c) cot 0 . 228 12 21 tan 21 Example 15. Determine the following acute angles in degrees and radians: sin 1 cos 1 tan 1 (a) 0 . 354 (b) 0 . 548 (c) 2 . 537 sin 1 = 20.732 0 or 20 0 43’56” Solution: (a) 0 . 354 sin 1 0 . 354 = 0.362 radians cos 1 = 56.77 0 or 56 0 46’12” (b) 0 . 548 cos 1 0 . 548 = 0.991 radians tan 1 = 68.487 0 or 68 0 29’14” (c) 2 . 537 tan 1 2 . 537 = 1.195 radians Example 16. Determine the following acute angles in degrees: sec 1 csc 1 cot 1 11 . 238 3 . 284 0 . 029 (a) (b) (c) 1 1 1 = 84.895 0 or 84 0 53’41” Solution: (a) sec 11 . 238 cos 11 . 238 1 1 1 = 17.728 0 or 17 0 43’43” (b) csc 3 . 284 sin 3 . 284 1 1 1 = 88.339 0 or 88 0 20’20” (c) cot 0 . 029 tan 0 . 029 Example 17. Evaluate the following expression , correct to 4 significant figures: 4 sec 32 1 0 2 cot 15 1 9 3 csc 63 8 tan 14 5 7 4 ( 1 . 1813 ) 2 ( 3 . 6512 ) 4 sec 32 1 0 2 cot 15 1 9 Solution: 3 csc 63 8 tan 14 5 7 3 ( 1 . 1210 )( 0 . 2670 ) 4 . 7252 7 . 3024 2 . 5772 0 . 8979 0 . 8979 2 . 870 Chapter 6: Trigonometry 13
Example 18. Evaluate rounded to 4 decimal places: (a) (b) csc( 95 4 7 ) sec( 115 ) Solution: Positive angles are considered to be counterclockwise and negative angles as clockwise. Hence 115 o is actually the same as 245 o (i.e. 360 o 115 o ) (a) sec( 115 ) sec 245 1 2 . 3662 cos 245 (b) csc( 95 4 7 ) 1 1 . 0051 sin( 95 4 7 ) 6.5 Trigonometric Identities ةـيـثلـثملا تاـقباـطتـملا Trigonometric Identities A trigonometric identity is a relationship that is true for all values of the unknown variable. The following identities are the fundamental trigonometric identities that are used to prove more complicated trigonometric identities: sin cos tan , cot , cos sin 1 1 1 , , , sec csc cot tan cos sin 2 2 2 2 2 2 sin cos 1 , 1 cot csc , 1 tan sec sin 2 Example 19. Prove the identity cot sec sin sin 2 Solution: LHS cot sec cos 1 sin 2 sin cos sin RHS 1 cot Example 20. Prove the identity cot 1 tan 1 cot Solution: LHS 1 tan cos sin cos 1 sin sin sin cos sin 1 cos cos (sin cos ) cos sin (cos sin ) cos cot RHS sin Chapter 6 : Trigonometry 14
1 sin x Example 21. Show that: Example 22. Prove that: sec x tan x 1 sin x 2 2 2 cos sin 1 2 sin ( 1 sin x )( 1 sin x ) Solution: LHS 2 2 Solution: We know that sin cos 1 ( 1 sin x )( 1 sin x ) from which we have: 2 ( 1 sin x ) 2 2 cos 1 sin 2 ( 1 sin x ) Hence, 2 2 LHS cos sin 2 2 2 2 2 2 ( 1 sin ) sin Since sin x cos x 1 then cos x 1 sin x 2 2 1 sin sin 2 2 ( 1 sin x ) ( 1 sin x ) LHS 2 RHS 1 2 sin 2 2 ( 1 sin x ) cos x 1 sin x 1 sin x cos x cos x cos x sec x tan x RHS 6.5 Trigonometric Equations ةـيـثلـثملا تلبداـعملا Trigonometric Equations Equations which contain trigonometric ratios are called trigonometric equations. There are usually an infinite number of solutions to such equations; however, solutions are often restricted to those between 0° and 360°. Knowledge of angles of any magnitude is essential in the solution of trigonometric equations and calculators cannot be relied upon to give all the solutions. The figure to the right shows a summary for angles of any magnitude. Example 23. Solve the trigonometric equation 5 sin 3 0 for values of θ from 0° to 360°. Solution: 5 sin 3 0 5 sin 3 3 sin 0 . 6 5 Since sin θ is negative θ is in the third and the fourth quadrants. sin 1 (shown as the angle α in the right figure below) The acute angle ( 0 . 6 ) 36 . 87 Hence θ = 180 o + 36.87 o = 216.87 o or θ = 360 o − 36.87 o = 323.13 o Chapter 6: Trigonometry 15
Recommend
More recommend