evolution of primordial magnetic fields from their
play

Evolution of Primordial Magnetic Fields from their Generation till - PowerPoint PPT Presentation

Evolution of Primordial Magnetic Fields from their Generation till Recombination Sayan Mandal Department of Physics, Carnegie Mellon University 6 th May, 2018 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 1 / 22 Collaborators Axel Brandenburg


  1. Evolution of Primordial Magnetic Fields from their Generation till Recombination Sayan Mandal Department of Physics, Carnegie Mellon University 6 th May, 2018 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 1 / 22

  2. Collaborators Axel Brandenburg ( NORDITA; Carnegie Mellon University ) Tina Kahniashvili ( Carnegie Mellon University; Ilia State University ) Alberto Roper Pol ( LASP at UC Boulder ) Alexander Tevzadze ( Tbilisi State University; Carnegie Mellon University ) Tanmay Vachaspati ( Arizona State University ) 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 2 / 22

  3. Introduction Magnetic fields ( ∼ µ G) are detected at different scales in the universe. Small seed (primordial) fields can be amplified by various mechanisms. ( Picture from I. Vovk’s Presentation. ) What is the origin of these primordial fields? Generation mechanism affects the statistical properties. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 3 / 22

  4. Generation Mechanisms Inflationary Magnetogenesis Seed fields arise from vacuum fluctuations a - very large correlation lengths. Involves the breaking of conformal symmetry. Scale invariant (or nearly) power spectrum. Typically involves couplings like R µνρσ F µν F ρσ or f ( φ ) F µν F µν . a Michael S. Turner and Lawrence M. Widrow. “Inflation-produced, large-scale magnetic fields”. In: Phys. Rev. D 37 (10 1988), pp. 2743–2754. doi : 10.1103/PhysRevD.37.2743 . url : https://link.aps.org/doi/10.1103/PhysRevD.37.2743 ; B. Ratra. “Cosmological ’seed’ magnetic field from inflation”. In: Astrophysical Journal Letters 391 (May 1992), pp. L1–L4. doi : 10.1086/186384 . 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 4 / 22

  5. Generation Mechanisms (Contd.) Phase Transition Magnetogenesis An out of equilibrium, first-order transition is typically needed. The turbulence is coupled to the magnetic fields, affecting its evolution. Violent bubble nucleation generates significant turbulence a . Causal processes – limited correlation lengths ( H − 1 ⋆ ). Two main phase transitions are: 1 Electroweak Phase Transition ( T ∼ 100 GeV) 2 QCD Phase Transition ( T ∼ 150 MeV) a Edward Witten. “Cosmic separation of phases”. In: Phys. Rev. D 30 (2 1984), pp. 272–285. doi : 10.1103/PhysRevD.30.272 . url : https://link.aps.org/doi/10.1103/PhysRevD.30.272 . 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 5 / 22

  6. Phase Transition Magnetogenesis 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 6 / 22

  7. 1. Modeling Magnetic Fields Stochastic , and statistically isotropic , homogeneous , and Gaussian magnetic fields. We work with the correlation function, � � B ij ( r ) ≡ � B i ( x ) B j ( x + r ) � = M N ( r ) δ ij + M L ( r ) − M N ( r ) r i ˆ ˆ r j + M H ( r ) ǫ ijl r l In Fourier space, � d 3 r e i k · r B ij ( r ) F ( B ) ij ( k ) = This gives the symmetric and helical parts, F ( B ) ij ( k ) k ) E M ( k ) H M ( k ) = P ij (ˆ 4 πk 2 + iǫ ijl k l (2 π ) 3 8 πk 2 k ) = δ ij − ˆ k i ˆ Here P ij ( ˆ k j . 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 7 / 22

  8. 1. Modeling Magnetic Fields (Contd.) � Mean magnetic energy density : E M = dk E M ( k ). � ∞ dk k − 1 E M ( k ) 0 Magnetic integral scale : ξ M ( t ) = . E M Magnetic Helicity : H M = 1 � � A · B d 3 r = dk H M ( k ). V Figure: From V aa.washington.edu We can relate the symmetric and helical components, | H M ( k ) | ≤ 2 k − 1 E M ( k ) |H M | ≤ 2 ξ M E M ⇒ 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 8 / 22

  9. 2. Helicity and Parity Violation Helical magnetic fields are produced by mechanisms that involve ( P ) violation. P (and CP ) violation can be related to processes giving rise to baryogenesis. This is one of the Sakharov conditions. Figure: From fnal.gov This has been studied (examples 1 ) by several authors. 1 Tanmay Vachaspati. “Estimate of the primordial magnetic field helicity”. In: Phys. Rev. Lett. 87 (2001), p. 251302. doi : 10.1103/PhysRevLett.87.251302 . arXiv: astro-ph/0101261 [astro-ph] ; Kohei Kamada and Andrew J. Long. “Evolution of the Baryon Asymmetry through the Electroweak Crossover in the Presence of a Helical Magnetic Field”. In: Phys. Rev. D94.12 (2016), p. 123509. doi : 10.1103/PhysRevD.94.123509 . arXiv: 1610.03074 [hep-ph] . 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 9 / 22

  10. 3. Methods Our free parameters: Initial correlation length ( ξ M⋆ ) (ratio to H − 1 ⋆ ). Initial energy density ( ρ M⋆ ) (ratio to ρ R⋆ ). Initial fractional helicity ( σ ⋆ ). Initial velocity of the plasma, u ⋆ . We assume (also for velocity) the initial spectra E M ( k, t ⋆ ) and H M ( k, t ⋆ ) where: F ij ( k , t ) k ) E M ( k, t ) H M ( k, t ) = P ij (ˆ + iǫ ijl k l (2 π ) 3 4 πk 2 8 πk 2 Direct numerical simulations (DNS) using the Pencil Code – study the evolution of E M ( t ) and ξ M ( t ). 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 10 / 22

  11. 4. Results Case I: The Batchelor Spectrum, No Helicity Figure: Q ⋆ = 10. Figure: Q ⋆ = 0 . 1. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 11 / 22

  12. 4. Results (Contd.) Case II: White Noise Spectrum, No Helicity Figure: Q ⋆ = 1. No inverse cascade. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 12 / 22

  13. 4. Results (Contd.) Case III: White Noise Spectrum, With Helicity Figure: Q ⋆ = 1. At late times: (i) Some inverse transfer, (ii) Turnover from k 2 to k 4 , (iii) Partial to fully helical. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 13 / 22

  14. 4. Results (Contd.) Case IV: Batchelor Spectrum, With Kinetic Helicity Figure: Q ⋆ = 1. Kinetic helicity transferred to magnetic helicity. P i goes towards β = 0, away from equilibrium. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 14 / 22

  15. 4. What We Learn Initial helicity leads to maximal helicity at later times. Helicity conserving evolution ( β = 0). No initial helicity : Decay along β = 2 - conserving 2 the Saffman Integral . Kinetically dominant : Decay along β = 4 - conserving the Loitsiansky Integral . We can predict the field characteristics at recombination. 2 P. A. DAVIDSON. “On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field”. In: Journal of Fluid Mechanics 663 (2010), 268292. doi : 10.1017/S0022112010003496 . 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 15 / 22

  16. 5. What We Learn (Contd.) Figure: Comparing existing observational constraints to our analysis. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 16 / 22

  17. 6. Gravitational Waves GWs can be generated by bubble collisions during the electroweak phase transition. The resulting magnetic field, and its coupling to the turbulence needs to be modeled. These B can also source turbulence, and hence more GWs. See Tina Kahniashvili’s talk for more details. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 17 / 22

  18. Thank You! 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 18 / 22

  19. Supplementary Slides 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 19 / 22

  20. Turbulence, MHD, and the pq Diagram � r 2 � u ( x ) · u ( x + r ) � d r ∝ ℓ 5 u 2 L = ℓ � � u ( x ) · u ( x + r ) � d r ∝ ℓ 3 u 2 S = ℓ Re = u rms ξ M ν p i ( t ) = d ln E i q i ( t ) = d ln ξ i , dt dt p i = ( β i + 1) q i Equilibrium line: p i = 2(1 − q i ). 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 20 / 22

  21. Decay Laws We take the maximum comoving correlation length at the epoch of EW Phase transition, � a 0 � ∼ 6 × 10 − 11 Mpc ξ ⋆ ≡ ξ max = H − 1 ⋆ a ⋆ and the maximum mean energy density as, E ⋆ = 0 . 1 × π 2 ⋆ ∼ 4 × 10 58 eV cm − 3 30 g ⋆ T 4 � 1 � − 1 2 , � � ξ η E η Non-helical case : ξ ⋆ = E ⋆ = . η ⋆ η ⋆ � 2 � − 2 3 , 3 . � � ξ η η E Helical case : ξ ⋆ = E ⋆ = η ⋆ η ⋆ � 1 � η 1 � � Partial : Turnover when = exp . 2 η ⋆ 2 σ 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 21 / 22

  22. Pencil Code We solve the hydromagnetic equations for an isothermal relativistic gas with pressure p = ρ/ 3 ∂ ln ρ − 4 3 ( ∇ · u + u · ∇ ln ρ ) + 1 u · ( J × B ) + η J 2 � � = , (1) ∂t ρ ∂ u − u · ∇ u + u 3 ( ∇ · u + u · ∇ ln ρ ) − u u · ( J × B ) + η J 2 � � = ∂t ρ − 1 4 ∇ ln ρ + 3 4 ρ J × B + 2 ρ ∇ · ( ρν S ) , (2) ∂ B = ∇ × ( u × B − η J ) , (3) ∂t where S ij = 1 2 ( u i,j + u j,i ) − 1 3 δ ij ∇ · u is the rate-of-strain tensor, ν is the viscosity, and η is the magnetic diffusivity. 6 th May, 2018 Sayan Mandal (CMU) Pheno 2019 22 / 22

Recommend


More recommend