evaluating the impact of interconnections in quantum dot
play

Evaluating the Impact of Interconnections in Quantum-dot Cellular - PowerPoint PPT Presentation

Evaluating the Impact of Interconnections in Quantum-dot Cellular Automata (QCA) Frank Sill Torres 1,2 , Robert Wille 1,3 , Marcel Walter 2 , Philipp Niemann 1,2 , Daniel Groe 1,2 , Rolf Drechsler 1,2 1 DFKI GmbH (Germany), 2 University of Bremen


  1. Evaluating the Impact of Interconnections in Quantum-dot Cellular Automata (QCA) Frank Sill Torres 1,2 , Robert Wille 1,3 , Marcel Walter 2 , Philipp Niemann 1,2 , Daniel Große 1,2 , Rolf Drechsler 1,2 1 DFKI GmbH (Germany), 2 University of Bremen (Germany) 3 JKU Linz (Austria) Sill Torres – QCA

  2. Outline  Motivation  Design Automation  Analysis Environment Results   Conclusions Sill Torres – QCA 2

  3. Motivation Quantum-dot Cellular Automata (QCA)  Promising nanotechnology based on quantum dots  Remarkable low energy dissipation Several (experimental) physical realizations based on different  concepts (Metal islands, nanomagnets, dangling bonds, …) Nanomagnets Metal islands Dangling bonds Sill Torres – QCA 3

  4. Motivation Interconnections  Challenging routing in QCA – QCA is (nearly) planar technology  Current state: 1 layer for logic & routing, 1 layer for crossings  Outlook: low amount of layers – Data flow must follow clocking constraint (clock 1 → clock 2 → clock 3 → … ) – Only orthogonal routing  Simple example: a 2 1 3 Routing overhead a f f 4 3 2 b b Sill Torres – QCA 4 3 4 1

  5. Motivation Interconnections cont’d  More complex design 2 4 1 3 1 4 3 2 4 1 s 3 4 2 3 1 3 2 1 4 2 a 4 1 2 3 1 4 3 2 1 4 co b Interconnections with notable impact on Area, Delay, Energy  increase  Question: What is the actual impact? Sill Torres – QCA 5

  6. Design Automation Comparison CMOS Process QCA Process No Differences Some Differences Transistors and QCA cells and connections its positions Layers of specific MOS layers material Sill Torres – QCA 6

  7. Design Automation Principal Flow 4 1 2 3 2 3 4 1 HDL Description Tile (clock zone) grid a a g2 f s s 4 1 2 3 g3 b f b Netlist 1 2 3 4 Layout Sill Torres – QCA 7

  8. Design Automation Gate Library Routing Elements Simple Gates Complex Gates Wire Inverter NOR Majority Bent wire XOR Sill Torres – QCA OR 8 Fanout

  9. Design Automation Energy Model  Components of energy dissipation of QCA: E clk - Energy from clock - E out - Energy to E in - Energy from neighboring cell(s) neighboring cell(s) - E env - Energy to environment Dissipated energy: E env = E clk + E in – E out     ( )  ∫ = Γ⋅ λ + Γ η E tanh dt ' env th 2  QCADesigner-E - Physics simulator including determination of energy dissipation of QCA (https://github.com/FSillT/QCADesigner-E) Sill Torres – QCA 9

  10. Design Automation Characterized Gate library Energy Disspation [meV] Area Delay Regl. Mode (25 GHz) Fast mode (100 GHz) [µm²] [tiles] ... 111 000 ... 111 000 Elements Routing Wire 0.01 1 0.09 ... - 0.82 ... - Bent-wire 0.01 1 0.10 ... - 0.84 ... - Fanout 0.01 1 0.12 ... - 1.15 ... - Inverter 0.01 1 0.13 ... - 1.19 ... - Logic Gates Majority 0.01 1 0.15 ... 0.15 1.41 ... 1.41 OR 0.01 1 0.18 ... - 1.30 ... - NOR 0.02 2 0.31 ... - 2.49 ... - ... ... ... ... ... ... ... ... ... Sill Torres – QCA 10

  11. Analysis Environment P&R Algorithm 1. Diagonal arrangement of 3. Diagonal placement of each clocking level o 1 1 2 3 1 2 3 o 2 2 3 4 2 3 4 o 3 3 4 1 3 4 1 2. Levelizing of netlist graph 4. Routing o 2 o 6 o 1 2 1 3 o 2 o 3 2 3 4 o 3 o 1 o 4 3 4 1 L1 L2 L3 Sill Torres – QCA 11

  12. Analysis Environment Flow  Synthesis: – Synthesis library (*.lib) for QCA gate library – Synopsys Design Compiler – ABC (AIG, BDD)  EFPL Benchmarks Benchmark name Outputs AND nodes Inputs Adder (adder) 256 129 1020 Barrel shifter (barrel) 135 128 3336 Max (max) 512 130 2865 Sine (sin) 24 25 5416 ... … … … Sill Torres – QCA 12

  13. Results Area Area Interconnection Overhead 10000 8000 6000 4000 2000 0 0 1000 2000 3000 4000 5000 6000 AND nodes of initial benchmarks AIG BDD Comm Sill Torres – QCA 13

  14. Results Delay Delay 60 Interconnection Overhead 50 40 30 20 10 0 0 1000 2000 3000 4000 5000 6000 AND nodes of initial benchmarks AIG BDD Comm Sill Torres – QCA 14

  15. Results Energy Dissipation Energy (Regular) 700 Interconnection Overhead 600 500 400 300 200 100 0 0 1000 2000 3000 4000 5000 6000 AND nodes of initial benchmarks AIG BDD Comm Sill Torres – QCA 15

  16. Conclusions  QCA is a promising nanotechnology for low energy applications  Specific characteristics of QCA design require notable amount of interconnections  Here: Evaluation of this impact  Results indicate high impact of Interconnections with consequences on area, delay, energy  Requirements for future research: – Comprehensive synthesis cost model for interconnections – New synthesis strategies with emphasis on reduction of interconnections – Exploration of new concepts (systolic arrays, logic duplication, …) Sill Torres – QCA 16

  17. Thank you! frasillt@uni-bremen.de Sill Torres – QCA 17

  18. Evaluating the Impact of Interconnections in Quantum-dot Cellular Automata (QCA) Frank Sill Torres 1,2 , Robert Wille 1,3 , Marcel Walter 2 , Philipp Niemann 1,2 , Daniel Große 1,2 , Rolf Drechsler 1,2 1 DFKI GmbH (Germany), 2 University of Bremen (Germany) 3 JKU Linz (Austria) Sill Torres – QCA

Recommend


More recommend