euler s formula without calculus
play

Eulers formula without calculus Steven Taschuk Intersections K W - PowerPoint PPT Presentation

Eulers formula without calculus Steven Taschuk Intersections K W 2014 September 16 Eulers formula e iv = cos v + i sin v ( i 2 = 1) Leonhard Euler (17071783) Introductio in Analysin Infinitorum (1748), p. 104 CotesEuler


  1. Euler’s formula without calculus Steven Taschuk Intersections K ∩ W 2014 September 16

  2. Euler’s formula e iv = cos v + i sin v ( i 2 = − 1) Leonhard Euler (1707–1783) Introductio in Analysin Infinitorum (1748), p. 104

  3. Cotes–Euler formula e iv = cos v + i sin v ( i 2 = − 1) Roger Cotes (1682–1716) “Logometria” (1714), p. 31

  4. Cotes–Euler formula: a proof For any real number x , e x = x 0 0! + x 1 1! + x 2 2! + x 3 3! + x 4 4! + x 5 5! + · · · Assume this holds for complex exponents too. Then e iv = ( iv ) 0 + ( iv ) 1 + ( iv ) 2 + ( iv ) 3 + ( iv ) 4 + ( iv ) 5 + · · · 0! 1! 2! 3! 4! 5! = v 0 0! + iv 1 1! − v 2 2! − iv 3 3! + v 4 4! + iv 5 5! − v 6 6! − iv 7 7! + · · · = cos v + i sin v

  5. Elementary definition of exponentiation n copies a n = � �� � a · a · · · a

  6. Elementary definition of exponentiation n copies a n = � �� � a · a · · · a a 0 = 1

  7. Elementary definition of exponentiation n copies a n = � �� � a · a · · · a a 0 = 1 a − n = 1 a n

  8. Elementary definition of exponentiation n copies a n = � �� � a · a · · · a a 0 = 1 a − n = 1 a n √ a m / n = n a m

  9. Elementary definition of exponentiation n copies a n = � �� � a · a · · · a a 0 = 1 a − n = 1 a n √ a m / n = n a m a x = lim n → x a m / n m

  10. Reason for defining a 0 and a − n as we do a 4 = a · a · a · a a 3 = a · a · a ↑ × a a 2 = a · a ↓ ÷ a a 1 = a

  11. Reason for defining a 0 and a − n as we do a 4 = a · a · a · a a 3 = a · a · a ↑ × a a 2 = a · a ↓ ÷ a a 1 = a a 0 = 1

  12. Reason for defining a 0 and a − n as we do a 4 = a · a · a · a a 3 = a · a · a ↑ × a a 2 = a · a ↓ ÷ a a 1 = a a 0 = 1 a − 1 = 1 a

  13. Reason for defining a 0 and a − n as we do a 4 = a · a · a · a a 3 = a · a · a ↑ × a a 2 = a · a ↓ ÷ a a 1 = a a 0 = 1 a − 1 = 1 a a − 2 = 1 a 2

  14. Reason for defining a 0 and a − n as we do a 4 = a · a · a · a a 3 = a · a · a ↑ × a a 2 = a · a ↓ ÷ a a 1 = a a 0 = 1 a − 1 = 1 a a − 2 = 1 a 2 i.e., we assume a n +1 = a n · a is also valid for negative exponents.

  15. Functional def’n of exponentiation (integer exponents) Theorem For every positive number a, there is exactly one function f : Z → R such that ◮ f (1) = a, and ◮ f ( m + n ) = f ( m ) f ( n ) for all m , n ∈ Z . We write f ( n ) = a n .

  16. Functional def’n of exponentiation (rational exponents) Theorem For every positive number a, there is exactly one function f : Q → R such that ◮ f (1) = a, and ◮ f ( p + q ) = f ( p ) f ( q ) for all p , q ∈ Q . We write f ( q ) = a q .

  17. Functional def’n of exponentiation (real exponents) Theorem For every positive number a, there is exactly one function f : R → R such that ◮ f (1) = a, and ◮ f ( u + v ) = f ( u ) f ( v ) for all u , v ∈ R . We write f ( v ) = a v . FALSE (assuming the axiom of choice)

  18. Functional def’n of exponentiation (real exponents) Theorem For every positive number a, there is exactly one function f : R → R such that ◮ f (1) = a, and ◮ f ( u + v ) = f ( u ) f ( v ) for all u , v ∈ R , and ◮ f is continuous. We write f ( v ) = a v . TRUE

  19. Cotes–Euler formula: a proof For any real number x , e x = x 0 0! + x 1 1! + x 2 2! + x 3 3! + x 4 4! + x 5 5! + · · · Assume this holds for complex exponents too. Then e iv = ( iv ) 0 + ( iv ) 1 + ( iv ) 2 + ( iv ) 3 + ( iv ) 4 + ( iv ) 5 + · · · 0! 1! 2! 3! 4! 5! = v 0 0! + iv 1 1! − v 2 2! − iv 3 3! + v 4 4! + iv 5 5! − v 6 6! − iv 7 7! + · · · = cos v + i sin v

  20. Cotes–Euler formula without calculus: part 0 e u + iv = e u e iv

  21. Cotes–Euler formula without calculus: part 1 Let e iv = C ( v ) + iS ( v ); want to show C = cos, S = sin. e i ( u + v ) = e iu + iv = e iu e iv C ( u + v ) + iS ( u + v ) = ( C ( u ) + iS ( u ))( C ( v ) + iS ( v )) = ( C ( u ) C ( v ) − S ( u ) S ( v )) + i ( S ( u ) C ( v ) + C ( u ) S ( v )) C ( u + v ) = C ( u ) C ( v ) − S ( u ) S ( v ) S ( u + v ) = S ( u ) C ( v ) + C ( u ) S ( v )

  22. Cotes–Euler formula without calculus: part 2 Theorem If C , S : R → R satisfy ◮ C ( u + v ) = C ( u ) C ( v ) − S ( u ) S ( v ) for all u , v ∈ R , and ◮ S ( u + v ) = S ( u ) C ( v ) + C ( u ) S ( v ) for all u , v ∈ R , and ◮ C and S are not both identically zero, and ◮ C and S are continuous, then there exist b , λ ∈ R , b > 0 , such that C ( v ) = b v cos( λ v ) S ( v ) = b v sin( λ v ) . and

  23. Characterization of sine and cosine: proof outline 1. Isolate the exponential part. � C ( v ) 2 + S ( v ) 2 ; show f ( u + v ) = f ( u ) f ( v ). (Let f ( v ) = Replace C , S with C / f , S / f .) 2. Prove identities, esp. C (2 v ) = 2 C ( v ) 2 − 1. 3. Prove that C has a root (or is constant). (If 0 ≤ C ( v ) ≤ 1 then 1 − C (2 v ) ≥ 2(1 − C ( v )); so if C ( v ) � = 1 then some C (2 n v ) < 0.) 4. Let λ = π 2 p , where p is the smallest positive root of C ; successively extend C ( v ) = cos( λ v ) from v = p v of form p / 2 n to v of form mp / 2 n to to v ∈ R

  24. Functional def’n of exponentiation (real exponents) Theorem For every positive number a, there is exactly one function f : R → R such that ◮ f (1) = a, and ◮ f ( u + v ) = f ( u ) f ( v ) for all u , v ∈ R , and ◮ f is continuous. We write f ( v ) = a v .

  25. Cotes–Euler formula without calculus: part 0 e u + iv = e u e iv

  26. Cotes–Euler formula without calculus: part 1 Let e iv = C ( v ) + iS ( v ); want to show C = cos, S = sin. e i ( u + v ) = e iu + iv = e iu e iv C ( u + v ) + iS ( u + v ) = ( C ( u ) + iS ( u ))( C ( v ) + iS ( v )) = ( C ( u ) C ( v ) − S ( u ) S ( v )) + i ( S ( u ) C ( v ) + C ( u ) S ( v )) C ( u + v ) = C ( u ) C ( v ) − S ( u ) S ( v ) S ( u + v ) = S ( u ) C ( v ) + C ( u ) S ( v )

  27. Cotes–Euler formula without calculus: part 2 Theorem If C , S : R → R satisfy ◮ C ( u + v ) = C ( u ) C ( v ) − S ( u ) S ( v ) for all u , v ∈ R , and ◮ S ( u + v ) = S ( u ) C ( v ) + C ( u ) S ( v ) for all u , v ∈ R , and ◮ C and S are not both identically zero, and ◮ C and S are continuous, then there exist b , λ ∈ R , b > 0 , such that C ( v ) = b v cos( λ v ) S ( v ) = b v sin( λ v ) . and

  28. (Almost) Cotes-Euler formula without calculus e iv = b v (cos( λ v ) + i sin( λ v ))

  29. (Almost) Cotes-Euler formula without calculus e iv = b v (cos( λ v ) + i sin( λ v )) INSERT PICTURES HERE

  30. (Almost) Cotes-Euler formula without calculus e iv = b v (cos( λ v ) + i sin( λ v )) INSERT PICTURES HERE ◮ Getting b = 1: ◮ further assume e z = e z

  31. (Almost) Cotes-Euler formula without calculus e iv = b v (cos( λ v ) + i sin( λ v )) INSERT PICTURES HERE ◮ Getting b = 1: ◮ further assume e z = e z ◮ Getting λ = 1: ◮ further assume ( ab ) z = a z b z ◮ . . . and normalize a logarithm

Recommend


More recommend