Estimation equations for multivariate linear models with Kronecker structured covariance matrices nska-´ Alvarez a , Chengcheng Hao b , Szczepa´ Yuli Liang c , Dietrich von Rosen d , e a Department of Mathematical and Statistical Methods, Pozna´ n University of Life Sciences, Poland, b School of Business Information, Shanghai University of International Business and Economics, China, c Statistics Sweden, Sweden, d Department of Energy and Technology, Swedish University of Agricultural Sciences, Sweden, e Department of Mathemathics, Link¨ oping University, Sweden 2.12.2016
Model Consider independent and identically matrix normally distributed observations X i ∼ N p , q ( µ , Ψ , Σ ) , i = 1 , ..., n , vec X i ∼ N pq ( vec µ , Σ ⊗ Ψ ), where E [ X i ] = µ - the expected value, D [ X i ] = Σ ⊗ Ψ - the dispersion matrix, Ψ - the p × p matrix describing the unknown covariance structure between the rows of X i , Σ - the q × q matrix describing the unknown covariance structure between the columns of X i
Data Y Let � n Y ( i ) = X i − 1 X i , n i =1 Moreover, � Y 1 i � Y = ( Y (1) , Y (2) , ..., Y ( n ) ) , Y ( i ) = , Y 2 i Y : p × nq , Y ( i ) : p × q , Y 1 i : r × q , Y 2 i : ( p − r ) × q , i = 1 , 2 , ..., n , so � Y 11 � � Y 1 � Y 12 ... Y 1 n Y = = , Y 21 Y 22 ... Y 2 n Y 2 where Y 1 : r × nq , Y 2 : ( p − r ) × nq .
Data ˜ Y ′ Let � ˜ � Y ′ 1 i Y ′ = ( ˜ ˜ (1) , ˜ (2) , ..., ˜ ˜ Y ′ Y ′ Y ′ Y ′ ( n ) ) , ( i ) = ˜ Y ′ 2 i � ˜ � � Y ′ � Y ′ Y ′ Y ′ 1 ... Y ′ = ˜ 11 12 1 n = ˜ Y ′ Y ′ Y ′ ... Y ′ 2 21 22 2 n where Y ′ : q × np , ˜ ˜ Y ′ 1 i : q × r , ˜ Y ′ 2 i : q × ( p − r ), i = 1 , 2 , ..., n .
Case 1 The matrix Σ is unstructured and Ψ is a partitioned matrix of the form � A ( θ ) � B Ψ = , B ′ Ω where A ( θ ): r × r , 1 < r < p , depends on an unknown parameter θ , B : r × ( p − r ) , Ω : ( p − r ) × ( p − r ) - unknown matrices.
Case 1 - Theorem 1 Given that the maximum likelihood estimator for θ in A ( θ ) can be obtained the maximum likelihood estimators of µ , Σ and Ψ satisfy the following equations: n � 1 µ � = X i , n i =1 d A ( � θ ) − 1 vec ( qn A ( � θ ) − Y 1 ( I n ⊗ � Σ − 1 ) Y ′ 1 ) = 0 , d � θ − 1 ′ ′ ′ np � � 1 ( I n ⊗ A ( � θ ) − 1 ) � Y 1 + ( � 2 − � 1 ( I n ⊗ � δ ))( I n ⊗ � Σ = Y Y Y Ψ 2 • 1 ) ′ ′ × ( � 2 − � 1 ( I n ⊗ � δ )) ′ , Y Y − 1 ) Y ′ − 1 ) Y ′ � ( Y 1 ( I n ⊗ � 1 ) − 1 Y 2 ( I n ⊗ � = δ Σ Σ 1 ,
Case 1 - Theorem 1 where � � A ( � � θ ) B � = Ψ , ′ � � B Ω and ′ A ( � � A ( � θ ) � � Ψ 2 • 1 + � � θ ) � B = δ , Ω = δ δ , − 1 )( Y 2 − � ′ Y 1 )( I n ⊗ � ′ Y 1 ) ′ . qn � ( Y 2 − � Ψ 2 • 1 = δ Σ δ
Case 1 - Corollary 1 Under the assumptions of Theorem 1, if − 1 ) Y ′ qn A ( � θ ) − Y 1 ( I n ⊗ � 1 = 0 , Σ then, � n 1 � µ = X i n i =1 1 − 1 ) Y ′ , � nq Y ( I n ⊗ � = Ψ Σ 1 − 1 ) � ′ ( I n ⊗ � � � Σ = Y Ψ Y . np
flip-flop algorithm P.Dutilleul (1999) - Since ( c Σ ) ⊗ ( 1 c Ψ ), all the parameters of Σ and Ψ are not defined uniquely. - The direct product Σ ⊗ Ψ is uniquely defined. - The convergence of the MLE algorithm may be assessed by try- ing various initial solution. If all of the initial solutions tried result in the same direct product ˆ Σ ⊗ ˆ Ψ and the corresponding final solu- tions are ˆ Σ , ˆ Ψ satisfy the criterion of the second derivatives, then any of the final solutions ˆ Σ , ˆ Ψ should provide maximum likelihood estimates for Σ and Ψ ; otherwise, they correspond, at the least, to local extrema of the likelihood function.
Case 1 - Corollary 2 Under the assumptions of Theorem 1, if A ( � θ ) = 1, then � n 1 � µ = X i n i =1 1 − 1 ) Y ′ , � nq Y ( I n ⊗ � = Ψ Σ 1 − 1 ) � ′ ( I n ⊗ � � � Σ = Y Ψ Y . np
Case 2 The matrix Σ is unstructured and Ψ is a block partitioned matrix, � A ( θ ) � B Ψ = , B ′ Ω where A ( θ ) - a compound symmetric structure, i.e., A ( θ ) = (1 − θ ) I r + θ 1 r 1 ′ r , where 1 r denotes the column vector of size r with all elements equal to 1.
Case 2 - Theorem 2 The maximum likelihood estimators of µ , Σ and Ψ satisfy the following equations: 1 1 − 1 ) Y ′ � r Y 1 ( I n ⊗ � = nqr ( r − 1) tr ( 1 r 1 ′ 1 ) − θ Σ r − 1 , n � 1 µ � = X i , n i =1 A ( � (1 − � θ ) I r + � θ 1 r 1 ′ θ ) = r , − 1 ′ ′ ′ np � � 1 ( I n ⊗ A ( � θ ) − 1 ) � Y 1 + ( � 2 − � 1 ( I n ⊗ � δ ))( I n ⊗ � Σ = Y Y Y Ψ 2 • 1 ) ′ ′ × ( � 2 − � 1 ( I n ⊗ � δ )) ′ , Y Y − 1 ) Y ′ − 1 ) Y ′ � ( Y 1 ( I n ⊗ � 1 ) − 1 Y 2 ( I n ⊗ � δ = Σ Σ 1 ,
Case 2 - Theorem 2 where � � A ( � � θ ) B � Ψ = , ′ � � B Ω and ′ A ( � � A ( � θ ) � � Ψ 2 • 1 + � � θ ) � B = δ , Ω = δ δ , − 1 )( Y 2 − � ′ Y 1 )( I n ⊗ � ′ Y 1 ) ′ . qn � ( Y 2 − � Ψ 2 • 1 = δ Σ δ
Case 3 Both matrices Σ and Ψ follow a compound symmetric covariance structure, i.e. (1 − ρ ) I p + ρ 1 p 1 ′ Ψ = p , σ 1 I q + σ 2 ( 1 q 1 ′ Σ = q − I q ) , where ρ , σ 1 and σ 2 are unknown parameters.
Case 3 - Theorem 3 The maximum likelihood estimators of µ , Σ and Ψ satisfy n � 1 µ � = X i , n i =1 � Ψ = (1 − � ρ ) I p + � ρ 1 p 1 ′ p , � Σ = � σ 1 I q + � σ 2 ( 1 q 1 ′ q − I q ) , where λ 3 / � � q ( � λ 1 + ( q − 1) � q ( � λ 1 − � λ 4 − 1 1 σ 2 = 1 σ 1 � = λ 2 ) , � λ 2 ) , � ρ = λ 4 + p − 1 , � λ 3 / � � λ 1 , � λ 2 - distinct eigenvalues of Σ � λ 3 , � λ 4 - distinct eigenvalues of Ψ
Case 3 - Theorem 3 and ˆ np (ˆ 3 t 1 + ˆ ˆ np ( q − 1) (ˆ 3 t 3 + ˆ 1 λ − 1 λ − 1 1 λ − 1 λ − 1 λ 1 = 4 t 2 ) , λ 2 = 4 t 4 ) , λ − 1 ˆ 1 ˆ λ − 2 4 ˆ λ 2 3 t 2 nq ˆ λ 3 − nq ˆ 3 ˆ λ − 1 − ˆ λ − 1 1 t 1 − ˆ λ − 1 λ 2 2 t 3 + 4 ( p − 1) λ − 1 ˆ 2 ˆ λ − 2 4 ˆ λ 2 3 t 4 p = ˆ λ 3 + ˆ + = 0 , , λ 4 ( p − 1) , ( p − 1) with t 1 = tr { P 1 p Y ( I n ⊗ P 1 q ) Y ′ } , t 2 = tr { Q 1 p Y ( I n ⊗ P 1 q ) Y ′ } , t 3 = tr { P 1 p Y ( I n ⊗ Q 1 q ) Y ′ } , t 4 = tr { Q 1 p Y ( I n ⊗ Q 1 q ) Y ′ } , where P 1 p = 1 p 1 p 1 ′ p and Q 1 p = I p − P 1 p and the observation matrix Y is the centered observation matrix.
Case 4 The matrix Σ is unstructured and in Ψ is the matrix which all diagonal elements equal 1. − 1 − 1 Ψ = T 2 2 d TT d , where T : p × p - the symmetric matrix, T d : p × p - the diagonal matrix with diagonal elements the same as matrix T .
Case 4 - Theorem 4 Maximum likelihood equations are given by the following relations: 1 1 np Σ = ˜ d T − 1 T d ) − 1 )˜ Y ′ ( I n ⊗ ( T 2 2 Y 1 1 1 1 1 − 1 d T − 1 + ( T − 1 T − 2 T − 1 T d T − 1 ) d + ( T − 1 T d AT 2 2 d AT 2 2 d A ) d T 2 2 = 0 , d where 1 1 d T − 1 T d − nq I p − Y ( I n ⊗ Σ − 1 ) Y ′ A = 2 nq T 2 2 and 1 1 1 ( T − 1 T d T − 1 ) d , ( T − 1 T 2 2 d A ) d 2 denote diagonal matrices. d AT
Literature Dutilleul P. (1999). The MLE algorithm for the matrix normal distribution. J. Statist. Comput. Simul, vol. 64, 105-123. Srivastava M. S., von Rosen T. and von Rosen D.(2008). Models with a Kronecker Product Covariance Structure: Estimation and Testing. Mathematical Methods of Statistics, vol. 17, No. 4, 357–370. nska-´ Szczepa´ Alvarez A, Hao Ch., Liang Y., von Rosen D. (2016). Estimation equations for multivariate linear models with Kronec- ker structured covariance matrices. Communications in Statistics- Theory and Methods. DOI10.1080/03610926.2016.1165852
Recommend
More recommend