estimating the robustness to asynchronism for cellular
play

Estimating the robustness to asynchronism for cellular automata - PowerPoint PPT Presentation

Cellular Automata Workshop Gdansk September 2005 Estimating the robustness to asynchronism for cellular automata models Nazim Fats ENS LYON Laboratoire de linformatique du paralllisme Modles de calcul et complexit


  1. Cellular Automata Workshop – Gdansk – September 2005 Estimating the robustness to asynchronism for cellular automata models Nazim Fatès ENS LYON – Laboratoire de l’informatique du parallélisme – Modèles de calcul et complexité joint work with Michel Morvan, Nicolas Schabanel, Eric Thierry, Damien Regnault 1

  2. Introduction 1950s : von Neumann and Ulam, “non-trivial self-reproduction”. ✳ ✳ ✴ ✴ ✳ ✳ ✴ ✴ ✳ ✳ ✷ ✷ ✴ ✴ ✳ ✳ ✻ ✻ ✷ ✷ ✴ ✴ ✳ ✳ ✷ ✷ ✴ ✴ ❅ ❅ ❃ ❃ ✹ ✹ ✼ ❘ ✼ ❘ ✱ ✵ ✱ ✵ ❆ ❆ ❄ ❄ ✺ ✺ ❙ ✻ ✻ ❙ ✶ ✲ ✶ ✲ ✷ ✸ ✷ ✸ ❅ ❅ ❃ ❃ ✹ ✹ ❘ ❘ ✱ ✵ ✱ ✵ ❆ ❆ ❄ ❄ ✺ ✺ ❙ ❙ ✲ ✶ ✲ ✶ ✸ ✸ ❅ ❅ ❃ ❃ ✹ ✹ ❘ ✼ ✼ ❘ ✵ ✱ ✵ ✱ ❆ ❆ ❄ ❄ ✺ ✺ ❙ ❙ ✲ ✶ ✶ ✲ ✸ ✸ ❅ ❅ ❃ ❃ ✹ ✹ ❘ ❘ ✵ ✱ ✵ ✱ ❆ ❆ ❄ ❄ ✺ ✺ ❙ ❙ ✲ ✂ ✶ ✲ ✂ ✶ ✸ ✸ ❇ ❇ ❂ ✄ ✿ ❁ ✄ ❁ ❂ ✿ ✜ ✜ ✫ ✫ ❈ ❈ ✞ ✝ ✝ ✞ ❀ ❀ ✢ ✢ ✘ ✙ ✙ ✘ ✬ ✬ ❇ ❇ ✿ ✿ ✜ ✜ ✫ ✫ ✝ ✝ ✘ ✘ ❈ ❈ ✞ ✞ ❀ ❀ ✢ ✢ ✙ ✙ ✬ ✬ ◆ ◆ ▲ ▲ � ❏ ❏ � ❇ ❇ ❖ ❖ ▼ ▼ ❑ ✁ ❑ ✁ ✿ ✂ ❁ ✿ ✂ ❁ ✜ ✜ ✫ ✫ ✝ ✝ ❂ ✄ ✄ ❂ ✘ ✘ ❈ ❈ ✞ ✞ ❀ ❀ ✢ ✢ ✙ ✙ ✬ ✬ ❉ ❉ ☎ ☎ ✚ ✚ ✽ ✽ ❇ ❇ ✿ ✿ ✜ ✜ ✫ ✫ ❊ ❊ ✆ ✆ ✝ ✝ ✗ ✗ ✘ ✛ ✛ ✘ ✾ ✾ ❈ ❈ ✞ ✞ ❀ ❀ ✢ ✢ ✙ ✙ ✬ ✬ ❉ ❉ ❖ ◆ ◆ ❖ ☎ ▲ ▼ ☎ ▲ ▼ ❑ ❏ � ✁ ❑ � ❏ ✁ ✚ ✚ ✽ ✽ ✖ ✖ ❊ ❊ ✆ ✆ ✗ ✗ ✛ ✛ ✾ ✾ ❉ ❉ ☎ ☎ ✚ ✚ ✽ ✽ ✖ ✖ ❊ ❊ ✆ ✆ ✗ ✗ ✛ ✛ ✾ ✾ ❉ ❉ ❖ ◆ ❖ ◆ ▲ ☎ ▼ ▲ ☎ ▼ ✁ � ❏ ❑ � ✁ ❑ ❏ ✚ ✚ ✽ ✽ ✖ ✖ ❊ ❊ ✆ ✆ ✗ ✗ ✛ ✛ ✾ ✾ ❉ ❉ ☎ ☎ ☞ ☞ ✚ ✚ ✽ ✽ ✖ ✖ ❊ ❊ ✆ ✆ ✗ ✗ ✛ ✛ ✾ ✾ ✒ ✓ ✓ ✒ ✔ P ◗ ◗ ✔ P ✟ ❍ ■ ✟ ❍ ■ ✥ ✥ ✣ ✣ ✕ ✕ ✠ ✠ ✖ ✖ ✦ ✦ ✤ ✤ ✔ ✔ ✟ ✟ ☞ ☞ ✥ ✥ ✣ ✣ ✕ ✕ ✠ ✠ ✦ ✦ ✤ ✤ ✏ ✏ ✍ ✍ ✯ ✯ ❵ ❫ ✭ ✭ ❫ ❵ ✒ ✑ ✒ ✑ ✎ ✔ P P ✔ ✎ ✟ ✰ ❍ ❍ ✰ ✟ ❛ ✌ ❴ ✮ ✌ ❛ ❴ ✮ ✥ ✥ ✣ ✣ ✓ ✓ ◗ ◗ ■ ■ ✕ ✕ ✠ ✠ ✦ ✦ ✤ ✤ ✡ ✡ ❱ ✧ ❱ ✧ ✩ ✩ ✔ ✔ ✟ ✟ ✥ ✥ ✣ ✣ ☛ ☛ ☞ ☞ ★ ❲ ★ ❲ ✪ ✪ ✕ ✕ ✠ ✠ ✦ ✦ ✤ ✤ ✑ ✏ ✏ ✑ ✍ ✎ ✍ ✎ ✡ ✰ ✯ ✰ ✯ ✡ ✭ ❴ ✮ ❵ ❛ ✌ ❫ ❛ ❵ ❴ ✮ ✭ ✌ ❫ ✧ ❱ ✧ ❱ ✩ ✩ ☛ ☛ ❲ ★ ★ ❲ ✪ ✪ ✡ ✡ ✧ ❱ ❱ ✧ ✩ ✩ ☛ ☛ ★ ❲ ❲ ★ ✪ ✪ ❋ ● ❋ ● ✏ ✑ ✏ ✑ ✍ ✎ ✎ ✍ ✯ ✡ ✰ ✡ ✰ ✯ ✮ ❴ ✭ ❛ ❵ ❫ ✌ ❛ ❫ ❵ ✌ ✭ ✮ ❴ ❱ ✧ ✧ ❱ ✩ ✩ ☛ ☛ ❲ ★ ★ ❲ ✪ ✪ ❳ ❳ ✡ ✡ ❱ ✧ ❱ ✧ ✩ ✩ ❨ ❨ ☛ ☛ ★ ❲ ❲ ★ ✪ ✪ ❋ ● ❋ ● ❳ ❳ ❨ ❨ ❳ ❳ ❨ ❨ ❋ ● ● ❋ ❳ ❳ ❨ ❨ ❳ ❳ ❨ ❨ ❯ ❚ ❪ ❭ ❭ ❪ ❯ ❚ ❩ ❩ ❬ ❬ ❩ ❩ ❬ ❬ ❚ ❯ ❪ ❭ ❪ ❯ ❭ ❚ ❩ ❩ ❬ ❬ ❩ ❩ ❬ ❬ But one possible criticism : assumption of perfect synchony What happens to a cellular automaton when the cells are not iterated synchronously ? History : – exp. : Ingerson & Buvel ( Physica D 10) – exp. : Schönfish – th : Gacs, Louis 2

  3. Methodology A first work has been done by simulation techniques presented in Automata 2003 (Leuven), to appear in Complex Systems → need of better evaluation of the asymptotic behaviour How long do I run simulations ? How long does it take for a perturbed system to re-stabilise ? e.g. computers linked with a ring topology obeying local constraints (tokens) 3

  4. Framework : ECA We restrict our study to “elementary cellular automata”. ... ... a b c a ... ... f(a,b,c) set of states : Q = { 0 , 1 } , size of the ring : n , configuration : x ∈ Q Z /n Z ECA : f : Q 3 → Q double quiescent : f (0 , 0 , 0) = 0 & f (1 , 1 , 1) = 1 4

  5. Asynchronous ECA (1) Def. partial asynchronous behaviour : at each time step t , each cell has a probability α to be updated  f ( x t i − 1 , x t i , x t i +1 ) if p ( α ) = 1  ∀ x ∈ Z /n Z , x t +1 = i x t otherwise  i � ✁ ✁ � ✞ ✝ ✞ ✝ ✆ ✎ ✆ ✎ ✠ ✟ ✠ ✟ ✡ ☛ ✡ ☛ ☎ ✍ ☎ ✍ � � ✝ ✝ ✟ ✟ ✡ ✡ ✁ ✁ ✞ ✞ ✆ ✎ ✆ ✎ ✠ ✠ ☛ ☛ ✍ ☎ ☎ ✍ ✁ � � ✁ ✝ ✞ ✞ ✝ ✆ ✎ ✆ ✎ ✠ ✟ ✠ ✟ ☛ ✡ ☛ ✡ ✍ ☎ ✍ ☎ � � ✝ ✝ ✟ ✟ ✡ ✡ ✁ ✁ ✞ ✞ ✎ ✆ ✆ ✎ ✠ ✠ ☛ ☛ ☎ ✍ ✍ ☎ � ✁ ✁ � ✝ ✞ ✝ ✞ ✎ ✆ ✎ ✆ ✠ ✟ ✠ ✟ ✡ ☛ ✡ ☛ ✂ ✂ ☞ ☞ ✏ ✏ ✄ ✄ ✌ ✌ ✍ ✑ ☎ ☎ ✑ ✍ ✂ ✄ ✄ ✂ ☞ ✌ ☞ ✌ ✏ ✑ ✏ ✑ ✂ ✂ ☞ ☞ ✏ ✏ ✄ ✄ ✌ ✌ ✑ ✑ ✒ ✓ ✓ ✒ ✗ ✖ ✖ ✗ ✼ ✼ ✔ ✕ ✔ ✕ ✂ ✄ ✂ ✄ ☞ ✌ ☞ ✌ ✏ ✑ ✑ ✏ ✻ ✻ ✒ ✒ ✖ ✖ ✔ ✔ ✓ ✓ ✗ ✗ ✼ ✼ ✕ ✕ ✻ ✻ ✓ ✒ ✒ ✓ ✖ ✗ ✖ ✗ ✼ ✼ ✕ ✔ ✕ ✔ ✒ ✒ ✖ ✖ ✻ ✻ ✔ ✔ ✓ ✓ ✗ ✗ ✼ ✼ ✕ ✕ ✻ ✻ ✓ ✒ ✓ ✒ ✗ ✖ ✖ ✗ ✼ ✼ ✔ ✕ ✔ ✕ ✵ ✵ ✷ ✷ ✹ ✹ ✿ ✿ ❁ ❁ ✽ ✽ ✶ ✶ ✸ ✸ ✺ ✺ ❀ ❀ ❂ ❂ ✻ ✻ ✾ ✾ ... ✶ ✵ ✶ ✵ ✷ ✸ ✷ ✸ ✺ ✹ ✺ ✹ ❀ ✿ ❀ ✿ ❁ ❂ ❂ ❁ ✽ ✾ ✽ ✾ ✵ ✵ ✷ ✷ ✹ ✹ ✿ ✿ ❁ ❁ ✽ ✽ ✶ ✶ ✸ ✸ ✺ ✺ ❀ ❀ ❂ ❂ ✾ ✾ . ✘ ✙ ✙ ✘ ✢ ✜ ✢ ✜ ✤ ✣ ✤ ✣ ✛ ✚ ✛ ✚ ✵ ✶ ✵ ✶ ✷ ✸ ✷ ✸ ✹ ✺ ✹ ✺ ✿ ❀ ✿ ❀ ❂ ❁ ❂ ❁ ✽ ✾ ✾ ✽ ✘ ✘ ✜ ✜ ✣ ✣ ✚ ✚ ✙ ✙ ✢ ✢ ✤ ✤ ✛ ✛ ✘ ✙ ✙ ✘ ✢ ✜ ✜ ✢ ✣ ✤ ✣ ✤ ✛ ✚ ✛ ✚ x^2 ✙ ✘ ✘ ✙ ✜ ✢ ✢ ✜ ✤ ✣ ✣ ✤ ✛ ✚ ✚ ✛ ✘ ✙ ✘ ✙ ✜ ✢ ✢ ✜ ✤ ✣ ✤ ✣ ✚ ✛ ✚ ✛ TIME ✥ ✥ ❃ ❃ ✧ ✧ ✩ ✩ ✫ ✫ ✦ ✦ ❄ ❄ ★ ★ ✪ ✪ ✬ ✬ ✦ ✥ ✦ ✥ ❄ ❃ ❃ ❄ ✧ ★ ★ ✧ ✪ ✩ ✩ ✪ ✫ ✬ ✬ ✫ x^1 ✥ ✥ ❃ ❃ ✧ ✧ ✩ ✩ ✫ ✫ ✦ ✦ ❄ ❄ ★ ★ ✪ ✪ ✬ ✬ ✮ ✭ ✭ ✮ ✰ ✯ ✰ ✯ ✱ ✲ ✱ ✲ ✴ ✳ ✳ ✴ ✦ ✥ ✥ ✦ ❄ ❃ ❃ ❄ ✧ ★ ✧ ★ ✩ ✪ ✩ ✪ ✫ ✬ ✬ ✫ ✭ ✮ ✭ ✮ ✰ ✯ ✰ ✯ ✲ ✱ ✲ ✱ ✴ ✳ ✳ ✴ ✮ ✭ ✭ ✮ ✰ ✯ ✰ ✯ ✲ ✱ ✱ ✲ ✳ ✴ ✴ ✳ x^0 ✮ ✭ ✭ ✮ ✯ ✰ ✰ ✯ ✱ ✲ ✲ ✱ ✴ ✳ ✴ ✳ ✭ ✭ ✯ ✯ ✱ ✱ ✳ ✳ ✮ ✮ ✰ ✰ ✲ ✲ ✴ ✴ α : synchrony rate , α → 1 classical case, ACA ⊂ PCA 5

Recommend


More recommend