erik delaquis philippe seguin arif mustafa roger samson
play

Erik Delaquis Philippe Seguin, Arif Mustafa, Roger Samson, Huguette - PowerPoint PPT Presentation

Assessing Switchgrass Varieties in a Northern Environment Erik Delaquis Philippe Seguin, Arif Mustafa, Roger Samson, Huguette Martel Introduction Switchgrass ( Panicum virgatum ) is a warm- season C 4 grass native to Eastern North America


  1. Assessing Switchgrass Varieties in a Northern Environment Erik Delaquis Philippe Seguin, Arif Mustafa, Roger Samson, Huguette Martel

  2. Introduction • Switchgrass ( Panicum virgatum ) is a warm- season C 4 grass native to Eastern North America • An important constituent of the formerly expansive tallgrass prairie ecosystem Image source: Kansas State University (Konza LTER.

  3. Range • Switchgrass is distributed East of the Rocky Mountain range from Central Mexico to ~55°N (Vogel et al., 2011) Applications: • Livestock bedding and forage • Energy • Combustion • Pyrolysis/gasification • Cellulosic ethanol • Biocomposite materials • Mushroom production Image source: USDA http://plants.usda.gov/maps/large/PA/PAVI2.png .

  4. Beneficial characteristics • Perennial and harvestable using standard hay equipment • Cold and heat hardiness • Drought resistant • High yields on marginal lands • Increase soil organic C through various processes (Liebig et al., 2005)

  5. Project rationale • Rapid growth in Eastern Canada’s planted area illustrates a producer need for well-adapted varieties/selections

  6. European context European context • Several trials since initiation of European switchgrass productivity network (Netherlands, Germany, UK, Greece, Italy) • Results indicate promising potential for switchgrass for biomass production, but further research needed on adapted varieties (Lewandowski et al., 2003)

  7. Origins of commercial cultivars • Commercially available cultivars originate for the American Midwest. A strong inverse relationship has been demonstrated between yield and latitude of origin (Boe, 2007). Montréal (45°N) 45°N Sunburst (42°N) Summer (40°N) Cave-in-Rock (37°N)

  8. Selection lineages Sunburst Bluejacket I Bluejacket II Bluejacket Early Summer Tecumesh I Tecumseh II Cave-In-Rock Cave-In-Rock II Cave-In-Rock Early Sandlover : Selection from NU942 – Oklahoma State University Parent cultivars+ selections = 11 total 3 selections of big bluestem ( Andropogon gerardii ), another promising WSG, were also evaluated

  9. Objectives • Evaluation of the performance and agronomic characteristics of several new selections made in situ at two sites in Southern Quebec • Evaluation of effects on yield and biomass quality of a fall or spring harvest date • Hypotheses: – 1. Locally made selections will perform better than their parent cultivars in the Southern Quebec environment – 2. A spring harvest will reduce yields but increase biomass quality

  10. Methods: Sites • Ste-Anne-de-Bellevue: McGill University experimental farm

  11. Methods: Sites • Cookshire-Eaton: Ferme Madeléo

  12. Methods: Experimental design • 2 sites, RCBD with 4 reps • Sites seeded in 2010, sampling in 2011 and 2012

  13. Methods: Data collection • Variables evaluated throughout the season: – Height – Tiller density – Phenology (maturity) • Variables evaluated at harvest: – Yield – Moisture content • Spring and fall harvest date: – Yield, moisture content – Fiber analysis (cellulose, hemicellulose, lignin) – Ash – Energy content (HHV)

  14. Results: Height Ste-Anne 2011 Cookshire-Eaton 2011 * 250 200 SUNBURST average plant height (cm) BJ1 BJ2 150 BJE SUMMER TEC1 100 TEC2 CIR CIR2 50 CIRE SANDLOVER 0 150 170 190 210 230 250 270 150 170 190 210 230 250 270 Date Date 1 st production year

  15. Results: Height Ste-Anne 2012 Cookshire-Eaton 2012 * 250 200 SUNBURST Average plant height (cm) BJ1 BJ2 150 BJE SUMMER TEC1 100 TEC2 CIR CIR2 50 CIRE SANDLOVER 0 140 160 180 200 220 240 260 150 170 190 210 230 250 270 Date Date 2 nd production year

  16. Results: Height Ste-Anne 2012 Cookshire-Eaton 2012 250 * * 200 * Average plant height (cm) 150 6.1% 9.4% CIR CIR2 100 CIRE 50 0 140 160 180 200 220 240 260 150 170 190 210 230 250 270 Date Date 2 nd production year

  17. Results: Tiller density Ste-Anne 2012 Cookshire-Eaton 2012 * 1600 1400 SUNBURST 1200 BJ1 Tiller number m -2 BJ2 1000 BJE SUMMER 800 TEC1 TEC2 600 CIR 400 CIR2 CIRE 200 SANDLOVER 0 140 160 180 200 220 240 150 170 190 210 230 250 270 Date Date 2 nd production year

  18. Results: Tiller density Sunburst lineage Ste-Anne 2012 Sunburst lineage Cookshire 2012 * * 1600 1400 * * * 1200 Tiller number m -2 1000 SUNBURST * * * 800 BJ1 BJ2 600 BJE 400 200 0 140 160 180 200 220 240 150 170 190 210 230 250 270 Date Date 2 nd production year

  19. Results: Maturity Ste-Anne-de-Bellevue 2012 Cookshire-Eaton 2012 * 5.10 4.90 SUNBURST 4.70 Means stage count (MSC) BJ1 BJ2 4.50 BJE SUMMER 4.30 TEC1 TEC2 4.10 CIR1 CIR2 3.90 CIRE 3.70 SANDLOVER 3.50 220 240 260 280 300 220 240 260 280 300 Date Date 2 nd production year

  20. Results: Maturity Ste-Anne-de-Bellevue 2012 * 4.90 SUNBURST BJ1 4.80 BJ2 Mean stage count (MSC) 4.70 BJE SUMMER 4.60 TEC1 TEC2 4.50 CIR1 CIR2 4.40 CIRE 4.30 SANDLOVER 4.20 230 235 240 245 250 255 260 265 270 275 280 Date 2 nd production year

  21. Results: Maturity Sunburst (42°N) Summer (40°N) Cave-in-Rock (37°N)

  22. Results: Yield • Strip harvest (width 60cm) in fall and spring

  23. Results: Fall harvest Ste-Anne-de-Bellevue 2011 Cookshire-Eaton 2011 14000 SUNBURST 12000 BJ1 BJ2 10000 BJE SUMMER Kg ha -1 oven dry TEC1 8000 TEC2 CIR1 6000 CIR2 CIRE PV1 4000 PV2 PVE 2000 SANDLOVER 0 1 st production year

  24. Results: Fall harvest Ste-Anne-de-Bellevue 2012 Cookshire-Eaton 2012 14000 SUNBURST 12000 BJ1 BJ2 10000 BJE SUMMER Kg ha-1 oven dry TEC1 8000 TEC2 CIR1 BJ2: +11.9% compared to Sunburst 6000 CIR2 CIRE CIR2: +15.5% compared to CIR PV1 4000 TEC2: No gain PV2 PVE 2000 PV2: +5.2% compared to PV1 SANDLOVER 0 2 nd production year

  25. Results: Spring yield Ste-Anne-de-Bellevue Cookshire-Eaton 12000 -41% -30% * * 10000 * 8000 Kg ha -1 oven dry * P=0.0530 * Fall 2011 * Fall 2011 6000 Spring 2012 Spring 2012 4000 * * * 2000 0 CIR CIR2 CIRE PV PV2 PVE CIR CIR2 CIRE PV PV2 PVE

  26. Results: Moisture content Ste-Anne-de-Bellevue Cookshire-Eaton * 50 45 40 35 Moisture (%) 30 Fall 2011 Fall 2011 25 Spring 2012 Spring 2012 20 15 10 5 0 CIR CIR2 CIRE PV PV2 PVE CIR CIR2 CIRE PV PV2 PVE

  27. Results: Cellulose Ste-Anne-de-Bellevue Cookshire-Eaton 50 * * * * 45 * 40 35 Cellulose (% by weight) 30 Fall 2011 Fall 2011 25 Spring 2012 Spring 2012 20 15 10 5 0 CIR CIR2 CIRE PV PV2 PVE CIR CIR2 CIRE PV PV2 PVE

  28. Results: Ash content Ste-Anne-de-Bellevue Cookshire-Eaton 6 5 4 Ash (% weight) Fall 2011 Fall 2011 3 Spring 2012 Spring 2012 Spring 2 1 Fall 0 CIR CIR2 CIRE PV PV2 PVE CIR CIR2 CIRE PV PV2 PVE

  29. Results: Energy content • Impact on energy content? Table 1. Energy content (HHV) in fall and spring Mj/kg Max Min Mean SD Cookshire Fall 19.70 18.90 19.32 0.20 Spring 19.60 19.09 19.35 0.15 Ste-Anne Fall 19.20 17.83 18.85 0.27 Spring 19.28 18.43 18.89 0.23

  30. Conclusions • Selections: Significant differences for all variables evaluated – Differences often between selection lineages – Large variability present including between lineages and sites – Trends observed suggest that local selection programmes should be pursued to develop regionally appropriate cultivars • Harvest date: spring harvest lowers moisture content and slightly increases cellulose levels, but not significantly enough to counter high losses of biomass – Soil contamination may be especially problematic in high snowfall or freeze-thaw cycle areas

  31. Literature cited • Boe, A. (2007). Variation between Two Switchgrass Cultivars for Components of Vegetative and Seed Biomass. Crop Science , 47 , 636 – 642. doi:10.2135/cropsci2006.04.0260 • Jenkins, B. M., Baxter, L. L., Miles, T. R. J., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology , 54 , 17 – 46. • Moore, K. J., Moser, L. E., Vogel, K. P., Waller, S. S., Johnson, B. E., & Pedersen, J. F. (1991). Describing and Quantifying Growth Stages of Perennial Forage Grasses. Agronomy Journal , 83 , 1073 – 1077. • Schmer, M. R., Vogel, K. P., Mitchell, R. B., Moser, L. E., Eskridge, K. M., & Perrin, R. K. (2005). Establishment Stand Thresholds for Switchgrass Grown as a Bioenergy Crop. Crop Science , 46 , 157 – 161. doi:10.2135/cropsci2005.0264 • Vogel, K. P., Sarath, G., Aaron, J., & Mitchell, R. B. (2011). Switchgrass. In N. G. Halford & A. Karp (Eds.), Switchgrass (pp. 341 – 380). Cambridge, UK: Energy Crops Royal Society of Chemistry. • Liebig, M. A., Johnson, H. A., Hanson, J. D., & Frank, A. B. (2005). Soil carbon under switchgrass stands and cultivated cropland. Biomass and Bioenergy, 28, 347 – 354. • Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25, 335 – 361.

  32. Thanks to: • MAPAQ for financial and technical support • REAP-Canada for germplasm, technical support • McGill • EU BC&E 2013

Recommend


More recommend