encoding normal vectors using optimized spherical
play

Encoding Normal Vectors using Optimized Spherical Coordinates J. - PowerPoint PPT Presentation

Encoding Normal Vectors using Optimized Spherical Coordinates J. Smith, G. Petrova, S. Schaefer Texas A&M University Motivation Motivation Motivation Motivation Normal Vectors On floating-point normal vectors [Meyer et al. 2010]


  1. Encoding Normal Vectors using Optimized Spherical Coordinates J. Smith, G. Petrova, S. Schaefer Texas A&M University

  2. Motivation

  3. Motivation

  4. Motivation

  5. Motivation

  6. Normal Vectors • On floating-point normal vectors [Meyer et al. 2010] – 96 bit vectors redundant – Only 51 bits are sufficient to represent floating point accuracy • Is floating point necessary? – Bound error – Robust – Efficient encode / Decode

  7. Point Distribution

  8. Point Distribution

  9. Point Distribution

  10. Point Distribution

  11. Related Work [Botsch et al. 2002] [Taubin et al. 1998]

  12. Related Work [Oliveira and Buxton 2006] [Griffith et al. 2007]

  13. Related Work [Deering 1995] [Górski et al. 2004]

  14. Related Work [Meyer et al. 2010]

  15. Contributions • User Specified Maximal Bounded Error • Variable Bit Encoding • Constant Time Encode and Decode – Independent of accuracy • Differential Encoding Method – Usable with other methods

  16. Spherical Coordinates

  17. Spherical Coordinates

  18. Rectangular Domain

  19. Solve for Minimum N θ (j)

  20. Choose N φ ε = 4 ο N φ = 23

  21. Choose N φ ε = 4 ο N φ = 34

  22. Choose N φ ε = 4 ο N φ = 81

  23. Minimize Encoding Points

  24. Uniform Encoding Points # of symbols = 2112

  25. Optimized Encoding Points # of symbols = 1334

  26. Regions on the Sphere

  27. Variable Bit Encoding 3 bits 6 bits

  28. Moving Frame

  29. Moving Frame

  30. Moving Frame

  31. Moving Frame

  32. Moving Frame

  33. Moving Frame

  34. Arithmetic Encoder • Adaptive Arithmetic Coding [F. Wheeler 1996] – Source code at http://www.cipr.rpi.edu/˜wheeler/ac 3 bits 8 bits 10 bits

  35. Arithmetic Encoder - Phi 600000 500000 400000 300000 200000 100000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

  36. Arithmetic Encoder - Phi 600000 0 500000 3 400000 300000 200000 4 100000 5 5 5 6 6 6 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

  37. No Moving Frame

  38. Moving Frame

  39. Timings 120 100 80 60 40 20 0 Ours ONV Sphere1 Octa HealPix Sextant o o o o Encode 1.2 Decode 1.2 Encode .0045 Decode .0045

  40. Conclusions • Encoding method that produces the smallest file sizes for a given maximum error • Constant time encoding and decoding • Differential encoding frame to improve encoding techniques • Variable Bit Encoding

Recommend


More recommend