Elena Graverini Particle Physics Seminar — University of Birmingham March 7, 2018 E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles 1/45 Search for Hidden Particles 1 / 45
Introduction 2/45 – matter-antimatter asymmetry – neutrino masses/mixing – dark matter – flavour anomalies... New physics? E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary Status: July 2015 √ s = 7, 8 TeV E miss √ s = 7 TeV √ s = 8 TeV Model e , µ, τ, γ Jets L dt [fb − 1 ] � Mass limit Reference T MSUGRA/CMSSM 0-3 e , µ /1-2 τ 2-10 jets/3 b Yes 20.3 ˜ q , ˜ g 1.8 TeV m( ˜ q )=m( ˜ g ) 1507.05525 q ˜ ˜ q , ˜ q → q ˜ χ 0 1 0 2-6 jets Yes 20.3 q ˜ 850 GeV m( ˜ χ 0 1 )=0 GeV, m( 1 st gen . ˜ q )=m( 2 nd gen . ˜ q ) 1405.7875 Inclusive Searches ˜ q ˜ q , ˜ q → q ˜ χ 0 1 (compressed) mono-jet 1-3 jets Yes 20.3 ˜ q 100-440 GeV m( ˜ q )-m( ˜ χ 0 1 ) < 10 GeV 1507.05525 χ 0 ˜ q ˜ q , ˜ q → q ( ℓℓ/ℓν/νν )˜ 1 2 e , µ (off- Z ) 2 jets Yes 20.3 ˜ q 780 GeV m( ˜ χ 0 1 )=0 GeV 1503.03290 ˜ g ˜ g , ˜ g → q ¯ q ˜ χ 0 0 2-6 jets Yes 20.3 g ˜ 1.33 TeV m( ˜ 1 )=0 GeV χ 0 1405.7875 χ ± 1 → qqW ± ˜ 1 χ 0 0-1 e , µ 2-6 jets χ 0 χ 0 ˜ g ˜ g , ˜ g → qq ˜ 1 Yes 20 g ˜ 1.26 TeV m( ˜ 1 ) < 300 GeV, m( ˜ χ ± )=0.5(m( ˜ 1 )+m( ˜ g )) 1507.05525 ˜ g ˜ g , ˜ g → qq ( ℓℓ/ℓν/νν )˜ χ 0 2 e , µ 0-3 jets - 20 ˜ g 1.32 TeV m( ˜ χ 0 1 ) = 0 GeV 1501.03555 GMSB ( ˜ 1 1-2 τ + 0-1 ℓ 0-2 jets 20.3 ˜ g tan β > 20 ℓ NLSP) Yes 1.6 TeV 1407.0603 GGM (bino NLSP) 2 γ - Yes 20.3 ˜ g 1.29 TeV c τ (NLSP) < 0.1 mm 1507.05493 GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 ˜ g 1.3 TeV m( ˜ χ 0 1507.05493 1 ) < 900 GeV, c τ (NLSP) < 0.1 mm, µ< 0 GGM (higgsino-bino NLSP) γ 2 jets Yes 20.3 ˜ g 1.25 TeV m( ˜ χ 0 1 ) < 850 GeV, c τ (NLSP) < 0.1 mm, µ> 0 1507.05493 GGM (higgsino NLSP) 2 e , µ ( Z ) 2 jets Yes 20.3 ˜ g 850 GeV m(NLSP) > 430 GeV 1503.03290 F 1 / 2 scale G ) > 1 . 8 × 10 − 4 eV, m( ˜ Gravitino LSP 0 mono-jet Yes 20.3 865 GeV m( ˜ g ) = m( ˜ q ) = 1.5 TeV 1502.01518 3 rd gen. g med. ˜ g ˜ g , ˜ g → b ¯ b ˜ χ 0 0 3 b Yes 20.1 g ˜ 1.25 TeV m( ˜ χ 0 1 ) < 400 GeV 1407.0600 g → t ¯ t ˜ χ 0 1 0 7-10 jets Yes 20.3 g ˜ 1.1 TeV m( ˜ χ 0 1308.1841 g ˜ ˜ g , ˜ 1 1 ) < 350 GeV ˜ g ˜ g , ˜ g → t ¯ t ˜ χ 0 1 0-1 e , µ 3 b Yes 20.1 ˜ g 1.34 TeV m( ˜ 1 ) < 400 GeV χ 0 1407.0600 ˜ ˜ g ˜ g , ˜ g → b ¯ t ˜ χ + 0-1 e , µ 3 b Yes 20.1 ˜ g 1.3 TeV m( ˜ χ 0 1 ) < 300 GeV 1407.0600 1 3 rd gen. squarks direct production b 1 ˜ ˜ b 1 , ˜ χ 0 ˜ χ 0 b 1 → b ˜ 1 0 2 b Yes 20.1 b 1 100-620 GeV m( ˜ 1 ) < 90 GeV 1308.2631 b 1 ˜ ˜ b 1 , ˜ b 1 → t ˜ χ ± 2 e , µ (SS) 0-3 b Yes 20.3 b 1 ˜ 275-440 GeV m( ˜ 1 )=2 m( ˜ χ ± 1 ) χ 0 1404.2500 ˜ t 1 ˜ t 1 , ˜ t 1 → b ˜ χ ± 1 1-2 e , µ 1-2 b Yes 4.7/20.3 ˜ ˜ 110-167 GeV 230-460 GeV m( ˜ χ ± 1 ) = 2m( ˜ χ 0 1 ), m( ˜ χ 0 1209.2102, 1407.0583 1 t 1 t 1 1 )=55 GeV t 1 ˜ ˜ t 1 , ˜ t 1 → Wb ˜ χ 0 1 or t ˜ χ 0 1 0-2 e , µ 0-2 jets/1-2 b Yes 20.3 ˜ t 1 ˜ t 1 90-191 GeV 210-700 GeV m( ˜ 1 )=1 GeV χ 0 1506.08616 ˜ t 1 ˜ t 1 , ˜ t 1 → c ˜ χ 0 0 mono-jet/ c -tag Yes 20.3 ˜ t 1 90-240 GeV m( ˜ t 1 )-m( ˜ χ 0 1407.0608 1 1 ) < 85 GeV t 1 ˜ ˜ t 1 (natural GMSB) 2 e , µ ( Z ) 1 b Yes 20.3 ˜ t 1 150-580 GeV m( ˜ χ 0 1 ) > 150 GeV 1403.5222 t 2 ˜ ˜ t 2 , ˜ t 2 → ˜ t 1 + Z 3 e , µ ( Z ) 1 b Yes 20.3 t 2 ˜ 290-600 GeV m( ˜ χ 0 1 ) < 200 GeV 1403.5222 ℓ L , R ˜ ˜ ℓ L , R , ˜ ℓ → ℓ ˜ χ 0 2 e , µ ˜ m( ˜ χ 0 1 0 Yes 20.3 ℓ 90-325 GeV 1 )=0 GeV 1403.5294 χ + ˜ 1 ˜ χ − 1 , ˜ χ + 1 → ˜ ℓν ( ℓ ˜ ν ) 2 e , µ 0 Yes 20.3 ˜ χ ± 140-465 GeV m( ˜ 1 )=0 GeV, m( ˜ χ 0 ℓ, ˜ ν )=0.5(m( ˜ χ ± 1 )+m( ˜ χ 0 1 )) 1403.5294 χ + ˜ 1 ˜ χ − 1 , ˜ χ + 2 τ - Yes 20.3 χ ± ˜ 1 100-350 GeV m( ˜ χ 0 ν )=0.5(m( ˜ χ ± 1 )+m( ˜ χ 0 1407.0350 direct 1 → ˜ τν ( τ ˜ ν ) 1 1 )=0 GeV, m( ˜ τ, ˜ 1 )) EW χ ± ˜ χ 0 1 ˜ 2 → ˜ ℓ L ν ˜ ℓ L ℓ (˜ νν ) , ℓ ˜ ℓ L ℓ (˜ ν ˜ νν ) 3 e , µ 0 Yes 20.3 χ ± ˜ 1 , ˜ χ 0 700 GeV m( ˜ 1 )=m( ˜ χ ± χ 0 2 ), m( ˜ χ 0 1 )=0, m( ˜ ℓ, ˜ ν )=0.5(m( ˜ χ ± 1 )+m( ˜ χ 0 1 )) 1402.7029 χ ± ˜ χ 0 1 ˜ 2 → W ˜ χ 0 1 Z ˜ χ 0 2-3 e , µ 0-2 jets Yes 20.3 ˜ χ ± 1 , ˜ χ 0 2 420 GeV m( ˜ χ ± 1 )=m( ˜ χ 0 2 ), m( ˜ χ 0 1 )=0, sleptons decoupled 1403.5294, 1402.7029 χ 0 χ 0 χ 0 1 χ ± χ 0 2 ˜ χ ± 1 ˜ 2 → W ˜ 1 h ˜ 1 , h → b ¯ b / WW /ττ/γγ e , µ, γ 0-2 b Yes 20.3 ˜ 1 , ˜ 2 250 GeV m( ˜ χ ± 1 )=m( ˜ χ 0 2 ), m( ˜ χ 0 1 )=0, sleptons decoupled 1501.07110 χ 0 ˜ χ 0 2 ˜ 3 , ˜ χ 0 2 , 3 → ˜ ℓ R ℓ 4 e , µ 0 Yes 20.3 ˜ χ 0 620 GeV m( ˜ 2 )=m( ˜ χ 0 3 ), m( ˜ χ 0 1 )=0, m( ˜ χ 0 ℓ, ˜ ν )=0.5(m( ˜ χ 0 2 )+m( ˜ χ 0 1 )) 1405.5086 - 2 , 3 GGM (wino NLSP) weak prod. 1 e , µ + γ Yes 20.3 W ˜ 124-361 GeV c τ< 1 mm 1507.05493 Direct ˜ χ + 1 ˜ 1 prod., long-lived ˜ χ − χ ± 1 Disapp. trk 1 jet Yes 20.3 ˜ χ ± 270 GeV m( ˜ 1 )-m( ˜ χ ± χ 0 1 ) ∼ 160 MeV, τ (˜ χ ± 1 ) = 0.2 ns 1310.3675 Direct ˜ χ + 1 ˜ 1 prod., long-lived ˜ χ − χ ± dE/dx trk - Yes 18.4 ˜ χ ± 1 482 GeV m( ˜ 1 )-m( ˜ χ ± χ 0 1 ) ∼ 160 MeV, τ (˜ χ ± 1506.05332 Long-lived particles 1 1 1 ) < 15 ns Stable, stopped ˜ g R-hadron 0 1-5 jets Yes 27.9 g ˜ 832 GeV m( ˜ 1 )=100 GeV, 10 µ s <τ (˜ χ 0 g ) < 1000 s 1310.6584 Stable ˜ g R-hadron trk - - 19.1 ˜ g 1.27 TeV 1411.6795 χ 0 - - χ 0 GMSB, stable ˜ τ , ˜ 1 → ˜ τ (˜ e , ˜ µ ) + τ ( e , µ ) 1-2 µ 19.1 ˜ 1 537 GeV 10 < tan β< 50 1411.6795 GMSB, ˜ χ 0 1 → γ ˜ G , long-lived ˜ χ 0 2 γ - Yes 20.3 ˜ χ 0 435 GeV 2 <τ (˜ χ 0 1 ) < 3 ns, SPS8 model 1409.5542 g , ˜ χ 0 1 displ. ee / e µ/µµ - - ˜ χ 0 1 χ 0 ˜ g ˜ 1 → ee ν/ e µν/µµν 20.3 1 1.0 TeV 7 < c τ (˜ 1 ) < 740 mm, m( ˜ g )=1.3 TeV 1504.05162 GGM ˜ g ˜ g , ˜ χ 0 1 → Z ˜ G displ. vtx + jets - - 20.3 χ 0 ˜ 1.0 TeV 6 < c τ (˜ χ 0 1 ) < 480 mm, m( ˜ g )=1.1 TeV 1504.05162 1 LFV pp → ˜ ν τ + X , ˜ ν τ → e µ/ e τ/µτ e µ , e τ , µτ - - 20.3 ˜ ν τ 1.7 TeV λ ′ 311 =0.11, λ 132 / 133 / 233 =0.07 1503.04430 Bilinear RPV CMSSM 2 e , µ (SS) 0-3 b Yes 20.3 ˜ q , ˜ g 1.35 TeV m( ˜ q )=m( ˜ g ), c τ LS P < 1 mm 1404.2500 ˜ χ + 1 ˜ χ − 1 , ˜ χ + 1 → W ˜ χ 0 1 , ˜ χ 0 1 → ee ˜ ν µ , e µ ˜ ν e 4 e , µ - Yes 20.3 ˜ χ ± 750 GeV m( ˜ χ 0 1 ) > 0.2 × m( ˜ χ ± 1 ), λ 121 � 0 1405.5086 χ + χ − χ + χ 0 χ 0 3 e , µ + τ - χ ± ˜ 1 χ 0 RPV ˜ 1 ˜ 1 , ˜ 1 → W ˜ 1 , ˜ 1 → ττ ˜ ν e , e τ ˜ ν τ Yes 20.3 1 450 GeV m( ˜ 1 ) > 0.2 × m( ˜ χ ± 1 ), λ 133 � 0 1405.5086 ˜ g ˜ g , ˜ g → qqq 0 6-7 jets - 20.3 ˜ g 917 GeV BR( t )=BR( b )=BR( c )=0% 1502.05686 g → q ˜ χ 0 1 , ˜ χ 0 0 6-7 jets - 20.3 g ˜ m (˜ χ 0 g ˜ ˜ g , ˜ 1 → qqq 870 GeV 1 )=600 GeV 1502.05686 g ˜ ˜ g , ˜ g → ˜ t 1 t , ˜ t 1 → bs 2 e , µ (SS) 0-3 b Yes 20.3 g ˜ 850 GeV 1404.250 ˜ t 1 ˜ t 1 , ˜ t 1 → bs 0 2 jets + 2 b - 20.3 t 1 ˜ 100-308 GeV ATLAS-CONF-2015-026 ˜ t 1 ˜ t 1 , ˜ t 1 → b ℓ 2 e , µ 2 b - 20.3 ˜ t 1 0.4-1.0 TeV BR( ˜ t 1 → be /µ ) > 20% ATLAS-CONF-2015-015 Other Scalar charm, ˜ c → c ˜ χ 0 0 2 c Yes 20.3 ˜ c 490 GeV m( ˜ 1 ) < 200 GeV χ 0 1501.01325 1 10 − 1 1 Mass scale [TeV] *Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty. • Higgs found! SM complete and consistent up to Plank scale. But... • NO smoking gun in direct searches up to ∼ 5 TeV... 2 / 45
SUSY, GUT, composite Higgs, large extra dimensions theories What is the energy scale of new physics? require the presence of new particles above the Fermi scale. E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles 3/45 ➜ Neutrino masses and oscillations: Right Handed see-saw neutrino masses from 1 eV to 10 15 GeV ➜ Dark matter: From 10 − 22 eV (super-light scalar) to ≥ 10 20 GeV (wimpzilla, Q-ball) ➜ Baryogenesis: Mass of new particle from 10 MeV to 10 15 GeV ➜ Higgs mass hierarchy: 3 / 45
E. Graverini (Universität Zürich) Where is new physics? Experimental approach SHiP: Search for Hidden Particles 4/45 inguez om aniel D Richard J acobsson and D ➜ Unsolved problems = ⇒ new particles ➜ Why didn’t we detect them? Too heavy or too weakly interacting 4 / 45
Hidden particles – it may have a rich structure – very weak interaction with matter – very long-lived objects! E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles 5/45 L world = L SM + L portal + L HS • Hidden Sector (HS) naturally accomodates Dark Matter • Interaction with visible sector (SM) proceeds through mediators • HS processes very strongly suppressed relative to SM – production BRs ∼ 10 − 10 • Can search HS through decays to visible particles 5 / 45
Recommend
More recommend