electrokinetic response of standard particles and more
play

Electrokinetic response of standard particles and more Claire - PowerPoint PPT Presentation

I WNET 2012, RROS Electrokinetic response of standard particles and more Claire Chassagne, Maria Ibanez, Guus Stelling Environmental Fluid Mechanics Civil Engineering and Geosciences Delft University of Technology System 1)


  1. I WNET 2012, RØROS Electrokinetic response of “standard particles” and more… Claire Chassagne, Maria Ibanez, Guus Stelling Environmental Fluid Mechanics Civil Engineering and Geosciences Delft University of Technology

  2. System 1) “standard”particles :  constant charge = 0,04 C/m^2 (sulfate latex)  radius = 265 nm (TEM)  monodisperse  Suspending medium: demi-water + salts

  3. System 2) “more” = non-spherical particles :  kaolinite, gibbsite, goethite (clays, oxides)  non-ideal

  4. Zeta Potential |ZP| = | ζ | < 25 mV AGGREGATE particle slip plane where of charge the zeta potential ζ |ZP| = | ζ | >> 25 mV Q is defined ζ =f(Q) STABLE

  5. Application zeta pot. > interactions > rheology

  6. Application

  7. Assumptions T = constant (no “thermo-dynamic”) E = applied electric field (but “electro-dynamic”) E (V/cm) << zeta potential (mV)/ double layer (nm)  X = Xeq + dX double layer (ion cloud) (zeta potential) Shear plane = surface particle :

  8. Relation charge / potential at eq. We will assume a constant surface charge : fixe charge => find the zeta potential for each ionic strength using (PB) + bisection method

  9. Surface potential / added salt in case of a constant charge -16 SIG=0.04 KCl SIG=0.04 MgCl -14 -12 surface potential (-) -10 -8 -6 -4 -2 0 0.0001 0.001 0.01 0.1 1 10 100 1000 added salt (mM)

  10. constant surface potential The shear plane is at d(nm) from the surface The zeta potential ζ = potential at shear plane Constant surface potential but zeta potential decreases with ionic strength when d ≠ 0

  11. Standard electrokinetic equations Poisson : Conservation of mass: Note:

  12. Standard electrokinetic equations Boundary conditions Potential : No flux: u ( ∞ ) = - U No slip:

  13. Electrophoresis standard electrokinetic equations relation electrophoretic mobility / zeta potential: found from (PB) assuming (given) constant charge found with no adjustable parameter found from solving numerically the set of standard electrokinetic equations

  14. Electrophoresis constant zeta potential ZP = 0.1x25 mV Smoluchowsky limit = 1 Analytical (Henry / Ohshima) Debye limit = 2/3 Analytical (O’Brien / Hunter) symbols: num. simulations ZP = 6x25 mV κ a

  15. Electrophoresis / added salt constant charge = x

  16. Electrophoresis / added salt constant charge 0 no adjustable parameter -10 -20 ZP (mV) -30 (mV) -40 -50 -60 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 added mM of MgCl2

  17. Electrophoresis / added salt constant charge 0 -10 -20 -30 ZP (mV) -40 -50 -60 MgCl2 ZetaSizer theory MgCl2 theory with d = 0,25 nm -70 same behavior for 2800 nm theory sigma = 2,5 d-2 C/m^2 Smoluchowski spheres (Kobayashi, Colloid -80 0.000001 0.0001 0.01 1 100 10000 Polym Sci (2008) 286:935–940) added mM of salt

  18. Electrophoresis / added salt constant charge Gittings and Saville, Colloids and Surfaces A (1998) 0 high > low -10 low > high NUM -20 OHSHIMA -30 -40 ZP (mV) -50 -60 -70 -80 -90 curvature! -100 0.0001 0.001 0.01 0.1 1 10 100 1000 [KCl] (mM)

  19. Hairy layer : Particle size / added salt DLS and TEM Gittings and Saville, Colloids and Surfaces A particle concentration: 19 mg/L (1998) 305 ZetaNano 300 Zeta3000 295 290 radius (nm) 285 280 275 270 TEM 265 260 0.00001 0.0001 0.001 0.01 0.1 1 10 100 [ KCl ] (mM)

  20. Electrophoresis / particle concentration 0 no added salt 1,5 mM KCl -10 0,1 mM MgCl2 1 mM MgCl2 -20 no added salt ZetaSizer 3000 “salt-free” -30 ZP ≈ - log (1/ Φ ) -40 ZP (mV) -50 Ohshima, Journal (mV) -60 of Colloid and Interface Science -70 247, 18–23 -80 (2002) -90 -100 0.1 1 10 100 1000 particle concentration (mg/L)

  21. Summary for spheres - Standard theory describes reasonably well the electrokinetic behavior of the latex particles, with no adjustable parameter (electrophoresis, dielec. spectro., conductivity) - adding a Stern layer conductance does not improve the fit => hairy layer (“soft particles”) could be explanation for shifting the shear plane approx. 0.25 nm from the particle surface - behavior as function of particle volume fraction follows prediction for nearly no salt

  22. Outlook electrokinetic response of spheroidal particles 2008 : => analytical solution (reproduce O’Brien + Loewenberg) 2012 : => numerical solution (=> improve analytical solution)

  23. Prolate spheroids (cigars)

  24. Prolate spheroids (cigars) 60 5 4 40 3 electrochemical 2 20 1 potential counterions 0 0 -1 -20 -2 -3 -40 -4 -5 -5 0 5 -60 -60 -40 -20 0 20 40 60 P H I1 PH I1 60 5 4 40 3 electrochemical 2 20 1 potential co-ions 0 0 -1 -20 -2 -3 -40 -4 -5 -60 -5 0 5 -60 -40 -20 0 20 40 60 PH I2 PH I2

  25. Oblate spheroids (mentos)

  26. Doppler electrophoresis at low volume fraction (original vol. frac. = 0.6%) Gibbsite (original conc. : 16 mg/L) 30 20 10 0 0,001 0,01 0,1 1 10 100 1000 -10 - Zeta potential (mV) -20 -30 -40 Na2SO4 (1/80) Na2SO4 (1/60) -50 Na2SO4 (1/40) volume fraction -60 Na2SO4 (1/20) -70 concentration salt(mM)

Recommend


More recommend