efficient interpolation and evolution of parton
play

Efficient interpolation and evolution of parton distribution - PowerPoint PPT Presentation

Efficient interpolation and evolution of parton distribution functions. Riccardo Nagar Deutsches Elektronen-Synchrotron (DESY) XXVII International Workshop on Deep Inelastic Scattering 812 April 2019, Turin, Italy work in collaboration with


  1. Efficient interpolation and evolution of parton distribution functions. Riccardo Nagar Deutsches Elektronen-Synchrotron (DESY) XXVII International Workshop on Deep Inelastic Scattering 8–12 April 2019, Turin, Italy work in collaboration with Markus Diehl and Frank Tackmann (DESY) 1 / 15

  2. Motivation Why do we need efficient and precise PDF interpolation and evolution? Precision predictions ◮ current interpolation precision becomes insufficient at N 3 LO [see Dulat et al. 1710.03016] ◮ fast on-the-fly Mellin convolutions with “complicated” kernels required for analytical higher-order resummation ◮ PDF derivatives appear in subleading power calculations Double parton scattering ◮ cross-section formula for DPS includes double parton distributions (DPDs) F a 1 a 2 ( x 1 , x 2 , ② , µ 1 , µ 2 ) 5D grids? optimistic est. is 1 TB! → ◮ DPDs needed for DPS phenomenology (e.g. W +jets) at different factorization scales ( µ 1 , µ 2 ) and differential in transverse separation ② ◮ already implemented solutions [Gaunt, Stirling ’11] [Elias, Golec-Biernat, Sta´ sto ’18] ◮ our goal: “fast” on-the-fly evolution and interpolation for DPDs 2 / 15

  3. PDF interpolation methods The usual interpolation [LHAPDF, APFEL, HOPPET, QCDNUM, ...] ◮ one or more grids in log x in interval [ x min , 1] (usually O (100) points) ◮ one or more grids in log α s ( µ ) or log( µ/ GeV) ◮ splines or polynomial interpolation on equispaced grids (not always on LHAPDF!) 10 - 2 ◮ LHAPDF : log cubic splines, 10 - 4 continuous 1st derivative 10 - 6 ◮ Mathematica : log cubic splines, 10 - 8 continuous 2nd derivative 10 - 10 10 - 6 10 - 5 10 - 4 0.001 0.010 0.100 1 3 / 15

  4. PDF interpolation methods The usual interpolation [LHAPDF, APFEL, HOPPET, QCDNUM, ...] ◮ one or more grids in log x in interval [ x min , 1] (usually O (100) points) ◮ one or more grids in log α s ( µ ) or log( µ/ GeV) ◮ splines or polynomial interpolation on equispaced grids (not always on LHAPDF!) 10 - 2 ◮ LHAPDF : log cubic splines, 10 - 4 continuous 1st derivative 10 - 6 ◮ Mathematica : log cubic splines, 10 - 8 continuous 2nd derivative 10 - 10 10 - 6 10 - 5 10 - 4 0.001 0.010 0.100 1 3 / 15

  5. Chebyshev interpolation Our interpolation ◮ one or more grids in u = log x ◮ interpolating N -th order polynomial in the Chebyshev points u k = cos k π ◮ Chebyshev ( N + 1)-grid on [ − 1 , 1]: ˜ → shifted grids in u N ◮ barycentric formula is simple, fast and numerically stable: ( − 1) j c j � u − u j f ( u ) ≃ f ( u j ) b j ( u ) , with b j ( u ) = , ( c 0 , N = 1 2 , c i =1 ) ( − 1) i c i � j i u − u i � �� � barycentric basis function Some advantages ◮ higher accuracy with considerably smaller number of points ◮ built-in Clenshaw-Curtis integration on full grid ◮ high-precision differentiation 4 / 15

  6. Comparing splines vs barycentric MMHT grid : 64 points 10 - 3 ◮ LHAPDF: 64 pts ◮ Mathematica: 64 10 - 7 pts ◮ Chebyshev: 63 pts 10 - 11 10 - 15 10 - 6 10 - 5 10 - 4 0.001 0.010 0.100 1 Relatively small amount of points can reach remarkable accuracy. 5 / 15

  7. Comparing splines vs barycentric HERAPDF grid : 199 points 10 - 3 ◮ LHAPDF: 199 pts ◮ Mathematica: 199 10 - 7 pts ◮ Chebyshev: 71 pts 10 - 11 10 - 15 10 - 6 10 - 5 10 - 4 0.001 0.010 0.100 1 Zero-crossings do not degrade the accuracy too much. 5 / 15

  8. Comparing splines vs barycentric Comparing: ◮ single grid [10 − 6 , 1] with 64 points ◮ double grid [10 − 6 , 0 . 2] and [0 . 2 , 1] with 32 points each. 10 - 3 10 - 7 10 - 11 10 - 15 10 - 6 10 - 5 10 - 4 0.001 0.010 0.100 1 Generally, better accuracy with (few) subintervals. 5 / 15

  9. Mellin moments: a measure of accuracy ◮ truncated Mellin moment of a PDF defined as � 1 dz z j − 1 f ( z ) M j ( f , x 0 ) = x 0 tends to the full Mellin moment as x 0 → 0 ◮ global measure of interpolation accuracy 10 - 3 10 - 3 10 - 6 10 - 6 10 - 9 10 - 9 10 - 12 10 - 12 10 - 15 10 - 15 40 60 80 100 120 40 60 80 100 120 6 / 15

  10. Mellin convolution ◮ Mellin convolution with a PDF � 1 � x � dz ( K ⊗ f )( x ) = z K ( z ) f , z x where K ( z ) is a kernel and f ( x ) the parton distribution ◮ use barycentric formula f ( x ) = � n f n b n ( x ), � 1 � x m � dz ( K ⊗ f )( x m ) = K mn f n , with K mn = z K ( z ) b n z x m ◮ obtain ( K ⊗ f ) at any x via interpolation Benefits 1. precision: pre-compute kernel matrix K ij once at desired precision 2. efficiency: apply same matrix to any discretized PDF-like distribution 7 / 15

  11. Mellin convolution accuracy Comparing Chebyshev (63 pts.) vs LHAPDF (MMHT grid, 64 pts.) 10 10 0.01 0.01 10 - 5 10 - 5 10 - 8 10 - 8 10 - 11 10 - 11 10 - 14 10 - 14 10 - 5 10 - 4 10 - 5 10 - 4 0.001 0.010 0.100 1 0.001 0.010 0.100 1 10 10 0.01 0.01 10 - 5 10 - 5 10 - 8 10 - 8 10 - 11 10 - 11 10 - 14 10 - 14 10 - 5 10 - 4 10 - 5 10 - 4 0.001 0.010 0.100 1 0.001 0.010 0.100 1 8 / 15

  12. Discretized DGLAP equations ◮ DGLAP evolution equations d d log µ f a ( x , µ ) = ( P ( α s ) ⊗ f a ) ( x , µ ) ◮ define ˜ f a ( x , µ ) = x f a ( x , µ ) � 1 d ˜ dz P ( z , α s ( µ )) ˜ f ( x , µ ) = f ( x / z , µ ) d log µ x ◮ discretize splitting kernel � 1 d f m = P mn ˜ ˜ f n with P mn = dz P ( z ) b n ( x m / z ) d log µ x m ◮ solve the linear system of differential equations 9 / 15

  13. ■ ◆ ■ ■ ■ ■ ■ ■ ■ ■ ■ ● ■ ■ ■ ■ ◆ ◆ ◆ ◆ ◆ ● ● ◆ ◆ ◆ ■ ● ◆ ◆ ◆ ◆ ◆ ● ● ● ● ● ● ● ● ● ● ● ◆ Runge–Kutta methods We solve the system of homogeneous differential equations using an explicit Runge–Kutta routine. Various Runge–Kutta implementations Accuracy in orders p of the step-size h : O ( h p ) ◮ classic RK4: “Fiat”, 4 function calls, 4th order ◮ Cash–Karp: “Alfa Romeo”, 6 function calls, 5th order ◮ Dormand–Prince: “Lamborghini”, 8 function calls, 6th order 10 - 6 10 - 8 10 - 10 10 - 12 10 - 14 10 - 16 10 4 10 100 1000 10 / 15

  14. Comparison with benchmark [hep-ph/0204316, hep-ph/0511119] We agree with all the digits shown in the benchmark tables. ◮ benchmark evolution using HOPPET (G. Salam) and PEGASUS (A. Vogt) ◮ benchmark values given with 5 significant digits (some points with 4) √ ◮ evolution from µ 0 = 2 GeV to µ = 100 GeV in variable flavour number scheme from N f = 3 to N f = 5, with matching at µ = m c and µ = m b ◮ HOPPET result obtained with a total of 1,170 pts in x ∈ [10 − 8 , 1] and 220 pts in µ 2 ∈ [2 , 10 6 ] GeV 2 Absolute difference of our NNLO evolution vs. the benchmark results 2 x L + x x u v x d v x L − x s + x c + x s − x g 10 − 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 − 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 4e-13 1e-12 3e-13 1e-13 1e-14 0.0 u ± ¯ our settings: N = 70 pts in x and h = 0 . 02 with L ± = ¯ d , q ± = q ± ¯ q 11 / 15

  15. PDF evolution accuracy Settings ◮ NNLO VFN evolution ◮ Runge–Kutta relative discrepancy between h = 0 . 02 and h = 0 . 004 ◮ discretization error estimated comparing N = 70 and N = 106 grids ◮ Evolution to µ = 1 . 01 m b (just after matching from n F = 3 to 5) ◮ Inaccuracy grows in valence distributions at low x 10 - 7 10 - 7 10 - 10 10 - 10 10 - 13 10 - 13 10 - 5 10 - 5 0.001 0.100 0.001 0.100 12 / 15

  16. PDF evolution accuracy Settings ◮ NNLO VFN evolution ◮ Runge–Kutta relative discrepancy between h = 0 . 02 and h = 0 . 004 ◮ discretization error estimated comparing N = 70 and N = 106 grids ◮ Evolution to µ = 1 . 01 m b (just after matching from n F = 3 to 5) ◮ Inaccuracy grows in valence distributions at low x 10 - 8 10 - 8 10 - 11 10 - 11 10 - 14 10 - 14 10 - 5 0.001 0.100 0.2 0.4 0.6 0.8 1.0 12 / 15

  17. PDF evolution accuracy Settings ◮ NNLO VFN evolution ◮ Runge–Kutta relative discrepancy between h = 0 . 02 and h = 0 . 004 ◮ discretization error estimated comparing N = 70 and N = 106 grids ◮ Evolution to µ = 10 TeV ◮ Numerical errors still under control; Runge-Kutta error negligible 10 - 7 10 - 7 10 - 10 10 - 10 10 - 13 10 - 13 10 - 5 10 - 5 0.001 0.100 0.001 0.100 12 / 15

  18. PDF evolution accuracy Settings ◮ NNLO VFN evolution ◮ Runge–Kutta relative discrepancy between h = 0 . 02 and h = 0 . 004 ◮ discretization error estimated comparing N = 70 and N = 106 grids ◮ Evolution to µ = 10 TeV ◮ Numerical errors still under control; Runge-Kutta error negligible 10 - 8 10 - 8 10 - 11 10 - 11 10 - 14 10 - 14 10 - 5 0.001 0.100 0.2 0.4 0.6 0.8 1.0 12 / 15

  19. Extension to DPDs H 1 p p ◮ DPD cross section is factorized as H 2 d σ DPS ∝ d σ (1) a 1 b 1 ( µ 1 ) ⊗ d σ (2) a 2 b 2 ( µ 2 ) � d 2 ② F a 1 a 2 ( ② , µ 1 , µ 2 ) ⊗ F b 1 b 2 ( ② , µ 1 , µ 2 ) ⊗ ◮ DGLAP equations extended to DPDs are separate evolution equations w.r.t. µ 1 or µ 2 [Diehl, Ostermeier, Sch¨ afer ’11] � � d P ( i ) ( α s ) ⊗ d log µ i F a 1 a 2 ( x 1 , x 2 , y , µ 1 , µ 2 ) = ( x 1 , x 2 , y , µ 1 , µ 2 ) i F a 1 a 2 EXPERT NOTE: homogeneous equations only valid for y -dependent DPDs! ◮ defining F a 1 a 2 ( x 1 , x 2 ) = 0 for x 1 + x 2 > 1, obtain µ 1 -evolution independent from x 2 and viceversa ◮ same discretization as done for PDFs → matrices P mn are the same 13 / 15

Recommend


More recommend