effective gluon mass and freezing of the qcd coupling
play

Effective gluon mass and freezing of the QCD coupling J. - PowerPoint PPT Presentation

Effective gluon mass and freezing of the QCD coupling J. Papavassiliou Department of Theoretical Physics and IFIC, University of ValenciaCSIC Based on: A. C. Aguilar and J. Papavassiliou, In preparation A. C. Aguilar and J. Papavassiliou


  1. Effective gluon mass and freezing of the QCD coupling J. Papavassiliou Department of Theoretical Physics and IFIC, University of Valencia–CSIC Based on: A. C. Aguilar and J. Papavassiliou, In preparation A. C. Aguilar and J. Papavassiliou “Gluon mass generation in the PT-BFM scheme,” JHEP 0612 , 012 (2006) [arXiv:hep-ph/0610040] J. Papavassiliou Effective gluon mass and freezing of the QCD

  2. � ( q ) �� � � � q � � q � � ( q ) = � q �( q 2 ) + q : �� �� � 1 � ( 0 ) 6 = 0. Acts as an effective “mass” for General Considerations Gluon “propagator” i g q 2 q 4 Dynamical generation of an infrared cutoff. The QCD dynamics allow for the gluons. Cornwall, Phys. Rev. D 26 , 1453 (1982) 24 20 16 ) 2 (q 12 8 4 0 - 3 - 1 1 3 10 10 10 10 q 2 [GeV 2 ] J. Papavassiliou Effective gluon mass and freezing of the QCD

  3. � in the QCD = m ( q 2 ) . = ) QCD remains Does not correspond to a term m 2 A 2 Lagrangian. The local gauge symmetry remains exact. Not hard but momentum dependent mass: m Drops off in the UV “sufficiently fast”. renormalizable Purely non-perturbative effect: Lattice (discretized space-time) Schwinger-Dyson equations (continuum). J. Papavassiliou Effective gluon mass and freezing of the QCD

  4. Schwinger-Dyson Equation � � � 1 ( a 1 ) ( a 2 ) � ( q 2 ) P ( q ) = q 2 P ( q ) + i � ( q ) + � �� �� �� �� Z 0 0 ( a 1 ) �� � � e 0 0 � ( q ) = [ dk ℄� � ( k ) � � ( k + q ) �� ��� � � � Z ( a 2 ) � = � C A g 2 g [ dk ℄�( k ) �� �� 1 2 C A g 2 I J. Papavassiliou Effective gluon mass and freezing of the QCD

  5. ��� ��� ��� ��� e � = L + T + T � Vertex ��� ��� �� q e ( q ; p 1 ; p 2 ) = � ( q ; p 1 ; p 2 ) + ig [�( p 2 ) � �( p 1 )℄ � � ��� � g �� � g �� The expression for the vertex that we will use is given by ( q ; p 1 ; p 2 ) = � i c 1 � q [�( p 1 ) + �( p 2 )℄ " # � � �( p 1 ) �( p 2 ) ��� � g �� � g �� ( q ; p 1 ; p 2 ) = � ic 2 � q + I 1 2 with e � ( q ; p 1 ; p 2 ) = ( p 1 � p 2 ) + 2 q � 2 q ��� � g �� � g �� � g �� L q 2 T q 1 q 2 T q 2 p 2 p 2 1 2 J. Papavassiliou Effective gluon mass and freezing of the QCD

  6. X � 1 � 1 � ( x ) = Kx + bg 2 ( x ) + � ( 0 ) = 1 Z Z x 1 SD equation ( x ) = �( x ) �( y ) ( x ) = � 2 ( y ) Z Z x 1 ( x ) = �( y ) ( x ) = �( y ) 8 Z x Z x a i A i �( x ) ( x ) = �( x ) �( y ) ( x ) = �( y ) i Z x Z x ( x ) = � 2 ( y ) ( x ) = � 2 ( y ) � 1 dyy 2 � ( � 2 ) = � 2 A 1 a 1 x dyy A 5 a 5 0 x A 6 a 6 dyy A 2 a 2 x dy 0 x dyy 3 A 3 a 3 x dyy A 7 a 7 x 0 0 1 dyy 2 dyy 3 A 4 a 4 A 8 a 8 x 0 0 The renormalization condition K is fixed by J. Papavassiliou Effective gluon mass and freezing of the QCD

  7. Z x Z x � 2 � 2 � 1 ~ ~ ( x ) ln x = g � ( 0 ) + � 1 ( y ) � ( y ) + ( y ) � ( y ) ~ � ( q 2 ) = ; The UV behavior of effective gluon mass + m 2 ( q 2 ) � 4 m 2 dy m 2 dy ym 2 � 2 � 1 �� ( x ) = ( ln x ) = ) h G a i �� G x 0 0 with 1 q 2 The asymptotic solutions: m 2 2 a x J. Papavassiliou Effective gluon mass and freezing of the QCD

  8. ( q 2 ) = g 2 �( q 2 ) , has the general form: ( q 2 ) ( q 2 ) = ; + m 2 ( q 2 ) ( q 2 ) and effective charge g 2 ( q 2 ) are Propagator and Running Masses � � q 2 � � �� The RG quantity, d � 2 � 1 . + � m 2 � m 2 ( q 2 ) = + m 2 � 2 � 2 g 2 d q 2 � � q 2 � � � 1 + � m 2 ( q 2 ) ( q 2 ) = where the dynamical mass m 2 � 2 m 4 m 2 0 0 0 ln ln q 2 0 g 2 b ln J. Papavassiliou Effective gluon mass and freezing of the QCD

  9. Numerical Results J. Papavassiliou Effective gluon mass and freezing of the QCD

Recommend


More recommend