dynamic games and bargaining johan stennek 1 dynamic
play

Dynamic Games and Bargaining Johan Stennek 1 Dynamic Games Logic - PowerPoint PPT Presentation

Dynamic Games and Bargaining Johan Stennek 1 Dynamic Games Logic of cartels Idea: We agree to both charge high prices and share the market Problem: Both have incentive to cheat Solution: Threat to punish cheater tomorrow


  1. Food Retailing • Mutual dependence – Some brands = Must have • ICA “must” sell Coke • Otherwise many families would shop at Coop – Some retailers = Must channel • Coke “must” sell via ICA to be active in Sweden • Probably large share of Coke’s sales in Sweden – Both would lose if ICA would not sell Coke 50

  2. Food Retailing • Mutual dependence – Manufacturers cannot dictate wholesale prices – Retailers cannot dictate wholesale prices • Thus – They have to negotiate and agree • In particular – Also retailers have market power = buyer power 51

  3. Food Retailing • Large retailers pay lower prices (= more buyer power) Retailer( Market(Share( Price( (CC#Table#5:3,#p.#44)# (CC#Table#5,#p.#435)# Tesco# 24.6# 100.0# Sainsbury# 20.7# 101.6# Asda# 13.4# 102.3# Somerfield# 8.5# 103.0# Safeway# 12.5# 103.1# Morrison# 4.3# 104.6# Iceland# 0.1# 105.3# Waitrose# 3.3# 109.4# Booth# 0.1# 109.5# Netto# 0.5# 110.1# Budgens# 0.4# 111.1# # 52

  4. Other examples • Labor markets – Vårdförbundet vs Landsting • Relation-specific investments – Car manufacturers vs producers of parts 53

  5. Food Retailing • Questions – How analyze bargaining in intermediate goods markets? – Why do large buyers get better prices? 54

  6. Bilateral Monopoly 55

  7. Bilateral Monopoly € • Exogenous conditions MC(q) – One Seller: MC(q) = inverse supply if price taker – One Buyer: MV(q) = inverse demand if price taker q MV(q) 56

  8. Bilateral Monopoly Intuitive Analysis € • Efficient quantity MC(q) – Complete information – Maximize the surplus S * to be shared q q * MV(q) 57

  9. Bilateral Monopoly Intuitive Analysis € • Efficient quantity MC(q) – Complete information – Maximize the surplus S * to be shared q q * MV(q) Efficiency from the point of view of the two firms = Same quantity as a vertically integrated firm would choose 58

  10. Bilateral Monopoly IntuiMve Analysis • Problem € – But what price? MC(q) • Only restrictions S * – Seller must cover his costs, C(q * ) – Buyer must not pay more than wtp, V(q * ) q q * MV(q) => Any split of S * = V(q * ) – C(q * ) seems reasonable 59

  11. Bilateral Monopoly IntuiMve Analysis • Note – If someone demands “too much” – The other side will reject and make a counter-offer • Problem – Haggling could go on forever – Gains from trade delayed • Thus – Both sides have incentive to be reasonable – But, the party with less aversion to delay has strategic advantage 60

  12. Bilateral Monopoly DefiniMons € • Definitions MC(q) – Efficient quantity: q * – Walrasian price: p w S * p w – Maximum bilateral surplus: S * q q * MV(q) 61

  13. Bilateral Monopoly • First important insight : € – Contract must specify both price and MC(q) quantity, (p, q) – Q: Why? S * • Otherwise inefficient quantity p w – If p > p w then q < q * – If p < p w then q < q * q q * MV(q) – Short side of the market decides 62

  14. Extensive Form Bargaining UlMmatum bargaining

  15. UlMmatum bargaining Solve this game now! • One round of negotiations – One party, say seller, gets to propose a contract (p, q) – Other party, say buyer, can accept or reject • Outcome – If (p, q) accepted, it is implemented – Otherwise game ends without agreement • Payoffs – Buyer: V(q) – p q if agreement, zero otherwise – Seller: p q – C(q) if agreement, zero otherwise • Perfect information – Backwards induction 64

  16. UlMmatum bargaining • Time 2: Buyer accepts or rejects proposed contract – Q: What would make buyer accept (p, q)? – Buyer accepts (p, q) iff V(q) – p q ≥ 0 • Time 1: Seller proposes best contract that would be accepted – Q: How do we find the seller’s best contract? – max p,q p q – C(q) such that V(q) – p q ≥ 0 65

  17. UlMmatum bargaining Seller's maximization problem p ⋅ q – C ( q ) max p , q V ( q ) – p ⋅ q ≥ 0 st : Optimal price Increase price until: p ⋅ q = V ( q ) Seller takes whole surplus Optimal quantity max q V ( q ) – C ( q ) ( ) = MC ( q ) Efficient quanMty Must set q such that: MV q 66

  18. UlMmatum bargaining • SPE of ultimatum bargaining game – Unique equilibrium – There is agreement – Efficient quantity – Proposer takes the whole (maximal) surplus 67

  19. UlMmatum bargaining • Assume rest of lecture – Always efficient quantity – Surplus = 1 – Player S gets share π S – Player B gets share π B = 1 – π S • Ultimatum game – π S = 1 – π B = 0 68

  20. Two rounds (T=2)

  21. Two rounds (T=2) • Alternating offers – Period 1 • B proposes contract • S accepts or rejects – Period 2 (in case S rejected) • S proposes contract • B accepts or rejects • Perfect information – No simultaneous moves – Players know what has happened before in the game • Solution concept – Backwards induction (Subgame perfect equilibrium) 70

  22. Two rounds (T=2) • Player B is impatient – € 1 in period 2 is equally good as €δ B in period 1 – Where δ B < 1 is B’s discount factor • Player S is impatient – € 1 in period 2 is equally good as €δ S in period 1 – Where δ S < 1 is S’s discount factor 71

  23. Two rounds (T=2) Solve this game now! • Period 1 ( ) – B proposes π B T − 1 , π S T − 1 – S accepts or rejects • Period 2 (in case S rejected) ( ) T , π S – S proposes π B T – B accepts or rejects • Perfect information => Use BI 72

  24. Two rounds • Period T = 2 (S bids) (What will happen in case S rejected?) T ≥ 0 π B – B accepts iff: T = 0 T = 1 – S proposes: π B π S • Period T-1 = 1 (B bids) T − 1 ≥ δ S π S π S = δ S < 1 – S accepts iff: T T − 1 = 1 − δ S > 0 T − 1 = δ S π B – B proposes: π S • Note – S willing to reduce his share to get an early agreement – Both players get part of surplus – B’s share determined by S’s impatience. If S very patient π S ≈ 1 73

  25. T rounds

  26. T rounds • Model – Large number of periods, T – Buyer and seller take turns to make offer – Common discount factor δ = δ B = δ S – Subgame perfect equilibrium (ie start analysis in last period) 75

  27. T rounds Time Bidder π B π S Resp. T S ? ? ? 76

  28. T rounds Time Bidder π B π S Resp. T S 0 1 yes 77

  29. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B ? ? ? 78

  30. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B rest δ yes 79

  31. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes 80

  32. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S ? ? ? 81

  33. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ (1- δ ) rest yes 82

  34. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ (1- δ ) 1- δ (1- δ ) yes 83

  35. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ (1- δ ) 1- δ (1- δ ) yes multiply 84

  36. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes 85

  37. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B ? ? ? 86

  38. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B rest δ (1- δ + δ 2 ) yes 87

  39. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B 1- δ (1- δ + δ 2 ) δ (1- δ + δ 2 ) yes 88

  40. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B 1- δ + δ 2 - δ 3 δ - δ 2 + δ 3 yes 89

  41. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B 1- δ + δ 2 - δ 3 δ - δ 2 + δ 3 yes T-4 S δ (1- δ + δ 2 - δ 3 ) rest yes 90

  42. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B 1- δ + δ 2 - δ 3 δ - δ 2 + δ 3 yes T-4 S δ (1- δ + δ 2 - δ 3 ) 1- δ (1- δ + δ 2 - δ 3 ) yes 91

  43. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B 1- δ + δ 2 - δ 3 δ - δ 2 + δ 3 yes T-4 S δ - δ 2 + δ 3 - δ 4 1- δ + δ 2 - δ 3 + δ 4 yes 92

  44. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B 1- δ + δ 2 - δ 3 δ - δ 2 + δ 3 yes T-4 S δ - δ 2 + δ 3 - δ 4 1- δ + δ 2 - δ 3 + δ 4 yes … … … … … 1 S yes δ - δ 2 + δ 3 - δ 4 + … - δ T-1 1- δ + δ 2 - δ 3 + δ 4 - … + δ T-1 93

  45. T rounds Time Bidder π B π S Resp. T S 0 1 yes T-1 B 1- δ δ yes T-2 S δ - δ 2 1- δ + δ 2 yes T-3 B 1- δ + δ 2 - δ 3 δ - δ 2 + δ 3 yes T-4 S δ - δ 2 + δ 3 - δ 4 1- δ + δ 2 - δ 3 + δ 4 yes … … … … … 1 S yes δ - δ 2 + δ 3 - δ 4 + … - δ T-1 1- δ + δ 2 - δ 3 + δ 4 - … + δ T-1 π B = δ − δ 2 + δ 3 − δ 4 + ... − δ T − 1 π S = 1 − δ + δ 2 − δ 3 + δ 4 − ... + δ T − 1 94

  46. T rounds Geometric series π B = δ − δ 2 + δ 3 − δ 4 + ... − δ T − 1 π S = 1 − δ + δ 2 − δ 3 + δ 4 − ... + δ T − 1 95

  47. T rounds S's share π S = 1 − δ + δ 2 − δ 3 + δ 4 − ... + δ T − 1 96

  48. T rounds S's share π S = 1 − δ + δ 2 − δ 3 + δ 4 − ... + δ T − 1 Multiply δπ S = δ − δ 2 + δ 3 − δ 4 + δ 5 − ... + δ T 97

  49. T rounds S's share π S = 1 − δ + δ 2 − δ 3 + δ 4 − ... + δ T − 1 Multiply δπ S = δ − δ 2 + δ 3 − δ 4 + δ 5 − ... + δ T Add π S + δπ S = 1 + δ T 98

  50. T rounds S's share π S = 1 − δ + δ 2 − δ 3 + δ 4 − ... + δ T − 1 Multiply δπ S = δ − δ 2 + δ 3 − δ 4 + δ 5 − ... + δ T Add π S + δπ S = 1 + δ T Solve π S = 1 + δ T 1 + δ 99

  51. T rounds Equilibrium shares with T periods ( ) 1 π S = 1 + δ 1 + δ T δ ( ) π B = 1 + δ 1 − δ T − 1 100

Recommend


More recommend