dynamic cdo term structure modelling
play

DYNAMIC CDO TERM STRUCTURE MODELLING Damir Filipovi c (joint with - PowerPoint PPT Presentation

DYNAMIC CDO TERM STRUCTURE MODELLING Damir Filipovi c (joint with Ludger Overbeck and Thorsten Schmidt) Vienna Institute of Finance www.vif.ac.at Special Semester on Stochastics with Emphasis on Finance Johann Radon Institute for


  1. DYNAMIC CDO TERM STRUCTURE MODELLING Damir Filipovi´ c (joint with Ludger Overbeck and Thorsten Schmidt) Vienna Institute of Finance www.vif.ac.at Special Semester on Stochastics with Emphasis on Finance Johann Radon Institute for Computational and Applied Mathematics (RICAM) Kick-off-Workshop, 11 September 2008 1

  2. Overview 1. Collateralized Debt Obligations (CDOs) 2. ( T, x )-Bonds 3. Arbitrage-free Term Structure Movements 4. Doubly Stochastic Framework 2

  3. Collateralized Debt Obligations (CDOs) • most important type of portfolio credit derivative • security backed by pool of reference entities ( assets ): bonds, loans, protection seller position in single name CDS, etc. • assets sold to special-purpose vehicle (SPV) • SPV issues notes on CDO tranches ( liabilities ) • important reference indices: ITraxx Europe, CDX (USA), 3

  4. Basic Structure of a CDO Payments in a CDO structure. Payments corresponding to synthetic CDOs are in italics . 4

  5. Literature Bennani (05): “The forward loss model: A dynamic term structure approach for the pricing of portfolio credit derivatives” Cont and Minca (08), “Recovering portfolio default intensities implied by CDO quotes” Ehlers and Sch¨ onbucher (06), “Pricing Interest Rate-Sensitive Credit Portfo- lio Derivatives” Ehlers and Sch¨ onbucher (06), “Background Filtrations and Canonical Loss Processes for Top-Down Models of Portfolio Credit Risk” Filipovi´ c, Overbeck and Schmidt (08), “Dynamic CDO Term Structure Mod- elling” Sch¨ onbucher (05), “Portfolio losses and the term structure of loss transition rates: A new methodology for the pricing of portfolio credit derivatives” Sidenius, Piterbarg and Andersen (IJTAF 08), “A new framework for dynamic credit portfolio loss modelling” 5

  6. Overview 1. Collateralized Debt Obligations (CDOs) 2. ( T, x ) -Bonds 3. Arbitrage-free Term Structure Movements 4. Doubly Stochastic Framework 6

  7. ( T, x ) -Bonds • (Ω , F , ( F t ) , Q ), Q risk-neutral measure • CDO pool of credits normalized to 1. • Loss process L t = � s ≤ t ∆ L s [0 , 1]-valued increasing MPP with abs. continuous compensator ν ( t, dx ) dt . • ( T, x ) -bond pays 1 { L T ≤ x } at maturity T , x ∈ [0 , 1]. Its price P ( t, T, x ) at t ≤ T is decreasing in T , increasing in x . Note: P ( t, T ) = P ( t, T, 1) is risk-free zero-coupon bond. 7

  8. Default Times of the ( T, x ) -Bonds Lemma 1: For any x ∈ [0 , 1], the process 1 { L t ≤ x } has intensity λ ( t, x ) = ν ( t, ( x − L t , 1]) . That is, � t M x t = 1 { L t ≤ x } + 0 1 { L s ≤ x } λ ( s, x ) ds is a martingale. Conversely, λ ( t, x ) uniquely determines ν ( t, dx ) via ν ( t, (0 , x ]) = λ ( t, L t ) − λ ( t, L t + x ) , x ∈ [0 , 1] . Proof. F ( L t ) − � t � 1 0 ( F ( L s + y ) − F ( L s )) ν ( s, dy ) ds is a martingale, for any 0 bounded measurable function F . For F ( L t ) = 1 { L t ≤ x } , we obtain F ( L s + y ) − F ( L s ) = − 1 { L s + y>x } 1 { L s ≤ x } . 8

  9. ( T, x ) -Bonds • Contingent claim with payoff F ( L T ) at T can be decomposed � 1 0 F ′ ( y )1 { L T ≤ y } dy F ( L T ) = F (1) − • Hence static replicating portfolio, at t ≤ T , is � 1 0 F ′ ( y ) P ( t, T, y ) dy F (1) P ( t, T ) − ⇒ ( T, x ) -bonds span all European type contingent claims 9

  10. Single Tranche CDOs (STCDOs) Standard instrument for investing in CDO-pool (e.g. iTraxx). Specified by • a number of future dates T 0 < T 1 < · · · < T n , • a tranche with lower and upper detachment points x 1 < x 2 , • a fixed spread S . 10

  11. Single Tranche CDOs (STCDOs) � x 2 Write H ( x ) = ( x 2 − x ) + − ( x 1 − x ) + = x 1 1 { x ≤ y } dy An investor in this STCDO • receives SH ( L T i ) at T i , i = 1 , . . . , n ( payment leg ), • pays − ∆ H ( L t ) = H ( L t − ) − H ( L t ) at any time t ∈ ( T 0 , T n ] where ∆ L t � = 0 ( default leg ). ⇒ STCDO can be priced via ( T, x )-bonds 11

  12. Single Tranche CDOs (STCDOs) Cash-flow attributed to tranche ( x 1 , x 2 ]: 12

  13. Overview 1. Collateralized Debt Obligations (CDOs) 2. ( T, x )-Bonds 3. Arbitrage-free Term Structure Movements 4. Doubly Stochastic Framework 13

  14. Term Structure Movements Aim: describe ( T, x )-bond price movements explicitly by P ( t, T, x ) = 1 { L t ≤ x } e − � T t f ( t,u,x ) du P ( t, T, x ) = P ( t, T ) Q T [ L T ≤ x | F t ] is F t -conditional CDF of L T w.r.t. Q T 14

  15. Note the Difference F t -conditional CDF of stock price S T w.r.t. Q T C ( t, T, x ) = P ( t, T ) Q T [ S T ≤ x | F t ] 15

  16. Term Structure Movements ( T, x )-bond price P ( t, T, x ) = 1 { L t ≤ x } e − � T t f ( t,u,x ) du where f ( t, T, x ) is the ( T, x ) -forward rate � t � t 0 b ( s, T, x ) ⊤ · dW s f ( t, T, x ) = f (0 , T, x ) + 0 a ( s, T, x ) ds + Risk-free T -forward rate f ( t, T ) = f ( t, T, 1) short rate r t = f ( t, t, 1) 16

  17. Term Structure Movements Include contagion : • direct: ∆ f ( t, T, x ) = c ( t, T, x ; ∆ L t ) • indirect: b ( t, T, x ) = b ( t, T, x ; L ), same for a , c � t � t 0 b ( s, T, x ; L ) ⊤ · dW s f ( t, T, x ) = f (0 , T, x ) + 0 a ( s, T, x ; L ) ds + � + c ( s , T , x ; ∆L s ) 1 { ∆L s > 0 } s ≤ t 17

  18. Arbitrage-free Term Structure Movements No arbitrage (NA) : e − � t 0 r s ds P ( t, T, x ) local martingale ∀ ( T, x ) Theorem 2: NA is equivalent to 2 � T � T � � a ( t, u, x ) du = 1 � � b ( t, u, x ) du � � 2 � � t t � � � 1 e − � T � � t c ( t , u , x ; y ) du − 1 + ν ( t , dy ) , 0 λ ( t, x ) = f ( t, t, x ) − r t on { L t ≤ x } , dt ⊗ d Q -a.s. for all ( T, x ). NB: recall ν ( t, dy ) = − λ ( t, L t + dy ) = − f ( t, t, L t + dy ) 18

  19. Single Tranche CDOs (STCDOs) Write p ( t, T, x ) = e − � T t f ( t,u,x ) du . Lemma 4: The value of the STCDO at time t ≤ T 0 is Γ( t, S )   n � �  dy = ( x 1 ,x 2 ] 1 { L t ≤ y } p ( t, T i , y ) − p ( t, T 0 , y ) + p ( t, T n , y ) + γ ( t, y )  S i =1 where � T n γ ( t, y ) = f ( t, u ) p ( t, u, y ) du if f ( t, u ) and L t are independent. T 0 Forward STCDO spread S ∗ ( t ) defined by Γ( t, S ∗ ( t )) = 0. 19

  20. STCDO swaption with strike K has payoff at maturity T 0   n � + . � K − S ∗ � � ( x 1 ,x 2 ] 1 { L t ≤ y } p ( T 0 , T i , y ) dy T 0   i =1

  21. Martingale Problem Aim: exogenous specification of b ( t, T, x ) and c ( t, T, x ) deter- mines full ( T, x )-bond model P ( t, T, x ). Martingale problem: implicit loss process L t such that ν ( t, dx ) = − f ( t, t, L t + dx ) becomes compensator Assumption: canonical stochastic basis Ω = Ω 1 × Ω 2 , F t = G t ⊗ H t , Q ( dω 1 , dω 2 ) = Q 1 ( dω 1 ) Q 2 ( ω 1 , dω 2 ): • (Ω 1 , G , ( G t ) , Q 1 ) carrying market information, i.e. Brownian motion W ( ω ) = W ( ω 1 ), • (Ω 2 , H ) canonical space of [0 , 1]-valued increasing MPPs, loss process = coordinate process: L t ( ω ) = ω 2 ( t ) • Q 2 probability kernel from Ω 1 to H to be determined below. 20

  22. Martingale Problem Solution: Jacod (75), “Multivariate Point Processes: Predictable Pro- jection, Radon-Nikodym Derivatives, Representation of Martingales” Theorem 3: Given vola and contagion parameters b ( ω ; t, T, x ) = b ( ω 1 , ω 2 ; t, T, x ) and c ( ω ; t, T, x, y ) = c ( ω 1 , ω 2 ; t, T, x, y ) 1. Define a ( t, T, x ) via NA drift condition. 2. Solve for f ( t, T, x ) along any loss path ω 2 . 3. Jacod (75): ∃ unique kernel Q 2 such that NA holds. 21

  23. Martingale Problem Theorem 3 contd.: Moreover, on { τ n < ∞} , = e − � τn + t ν ( ω 1 ,ω 2 ( τ n ); s, [0 , 1]) ds � � Q τ n +1 − τ n > t | G ⊗ H τ n τn and ν ( τ n , A ) Q [∆ L τ n ∈ A | G ⊗ H τ n − ] = A ⊂ [0 , 1] ν ( τ n , [0 , 1]) , where 0 < τ 1 < τ 2 < · · · denote jump times of L . 22

  24. Monte–Carlo algorithm Along any Brownian path ω (1) , . . . , ω ( N ) , by recursion 1 1 • solve f ( t, T, x ) with L t ≡ L τ i − 1 for t ≥ τ j − 1 � t ǫ ( j ) ∼ exp iid � τ j − 1 λ ( s, L τ j − 1 ) ds ≥ ǫ ( j ) � • set τ j = inf , t | − λ ( τ j ,L τj − 1 + dx ) • simulate ∆ L τ j ∼ , x ≥ 0 λ ( τ j ,L τj − 1 ) • restart at τ j with ∆ f ( τ j , T, x ) = c ( τ j , T, x ; ∆ L τ j ) 23

  25. Overview 1. Collateralized Debt Obligations (CDOs) 2. ( T, x )-Bonds 3. Arbitrage-free Term Structure Movements 4. Doubly Stochastic Framework 24

  26. Doubly Stochastic Framework No contagion b ( ω ) = b ( ω 1 ) and c = 0. Then L becomes (uniquely) G -conditional Markov. Moreover, for any G -measurable X ≥ 0: X e − � T � � t λ ( s,x ) ds | G t E [ X 1 { L T ≤ x } | F t ] = 1 { L t ≤ x } E . (This is the SPA 08 framework) 25

  27. Affine Term Structure Models State space Z ⊂ R d , state process dZ t = µ ( Z t ) dt + σ ( Z t ) · dW t , Z 0 = z Affine term structure (ATS) f ( t, T, x ) = A ′ ( t, T, x ) + B ′ ( t, T, x ) ⊤ · Z t � T � T t A ′ ( t, u, x ) du , B ( t, T, x ) = t B ′ ( t, u, x ) du . Write A ( t, T, x ) = 26

Recommend


More recommend