dye sensitized solar cells materials and interfaces
play

Dye-sensitized Solar Cells - Materials and Interfaces Lars Kloo - PowerPoint PPT Presentation

Dye-sensitized Solar Cells - Materials and Interfaces Lars Kloo Dept. of Chemistry School of Chemical Sciences & Engineering KTH Royal Institute of Technology Stockholm, SWEDEN Energy in the future WEO 2008 2009 : ca. 16 TW,


  1. Dye-sensitized Solar Cells - Materials and Interfaces Lars Kloo Dept. of Chemistry School of Chemical Sciences & Engineering KTH Royal Institute of Technology Stockholm, SWEDEN

  2. Energy in the future WEO 2008 2009 : ca. 16 TW, momentaneous yearly averaged rate of consumption ( cf. 4.1 x 10 20 J/ y; 2006 it was 13 TW) 2050 : Estimated to 28 TW Perspective : 1 new 1 GW nuclear reactor per day for 30 years… … BUT, less than 1 hour of solar light 2

  3. The alternatives Thus, we need 12 TW 3

  4. Energy and latitude Solar light in different regions: SE: 871 kWh m -2 y -1 (= 242 W m -2 ) GE: 1014 kWh m -2 y -1 ES: 1586 kWh m -2 y -1 Optimal angle in SE: 44°(S): 1079 kWh m -2 y -1 Latitude of Moscow ≈ Stockholm 4

  5. Energy from the Sun • Photosynthesis → biomass/ biofuels – Efficiency < 1% • Solar heat: – Water heating (domestic): Efficiency ≤ 70% – Elektricity: Conc solar light (CSP), turbines, etc: Efficiency ≤ 20% • Solar electricity (solar cells) – Direct conversion: Efficiency ≤ 20% Common problem: S TORAGE ! 5

  6. Solar cell technologies p-CIGS – Thin film CdTe/CdS – Thin film Solid solution of Cu(In,Ga)Se 2 (1-3 µm) Too expensive !!! Power excellent – Energy not optimal !!! Si Amorf, polycryst. or monocryst New and promising technologies … 6

  7. Cost & efficiency improvmenents I. Si-based II. Thin-film III. ??? Target: < 0.5 €/ W p or > 20% efficiency at < 100 €/ m 2 7

  8. Grätzel cells ≅ DSC Cited 7,800 times; Feb 19, 2012 Current world record (lab cells): ≈ 13% 8

  9. The electrochemical cell Cell = 2 electrodes + electrolyte 9

  10. DSC function Resistance Sensitizer Redox electrolyte TiO 2 TCO 10

  11. A note on kinetics e - fs µ s E e - CB > ns ms e - < ms VB Semi- Dye Electrolyte conductor ”a molecular diode”

  12. Multicomponent cell Semiconductor-based cell DSC: Absorption & charge transport separated !!! 12

  13. Pro’s & con’s + • ’Kitchen chemistry’ ( i.e. easy to make) • Inexpensive (glass substrate the most expensive) • Relatively high efficiency • Also works in diffuse light ( i.e. indoor, cloudy days, etc. ) - • Complex, interlinked reactions (tuning required!) • Stability • Competition from other technologies 13

  14. Estetic Toyota (Jpn) Sony (Jpn) Dyesol (Aus) 14

  15. Useful? Profs. Segawa & Uchida, Tokyo Univ., Japan (among 10 best of 35 … ) 15

  16. Simple: Three parts only ! 16

  17. Photoelectrode (Part 1: Semiconductor) Step 1: Nanostructured semiconductor 300 nm TiO 2 -particles, d ≈ 25 nm 1 cm 2 contains ≈ 10 13 particles (huge surface – nano !) 17

  18. Photoelectrode (Part 2: Sensitizer) Sensitizing dye Step 2: The dye 18

  19. Counter electrode A pencil offers the graphite … Catalytical material Catalytic platinum (Pt) Graphite Conducting polymers Nanoporous carbon 19

  20. Electrolyte • Organic solvent (ethanol etc .) • Dissolved redox couple ( eg. I - / I 3 - ) 20

  21. A DSC in about 15 min Voltage Current µ A V The DSC obtained: • ≈ 0,5 V photovoltage • Lousy current • ≈ 0.5% efficiency … 21

  22. CMD www.moleculardevices.se 22

  23. CMD at KTH ”Materials & Fundamentals” CMD: > 30 researchers 23

  24. CMD Cited > 300 times in a year 24

  25. The cells Lab cells Monolithic cells (Swerea IVF AB) 25

  26. CMD: Electrode materials Working Electrode - Metal oxide semiconductors Counter Electrode - Metals - Carbon materials - Semiconductors - Polymers Sensitizer - Metal coordination complexes - Organic dyes - Semiconductor Quantum-Dots 26

  27. CMD: Electrolyte Solvents - Ionic liquids - ISILs Redox Couple - Halogens - Organic molecules Additives - Solid-state mediators - Cations - Lewis bases 27

  28. The electrolyte An electrolyte is a chemical system that provides an electrolytic contact between the solar cell electrodes 28

  29. Types Electrolytes Gel-like Solid Liquid (quasi-solid) 29

  30. Organic solvents Name Formula Meltin Boiling Viscosity, g Point, cp o C Point o C H 2 O Water 0 100 0.89 CH 3 CH 2 OH Ethanol -114 78 1.08 CH 3 CN 0.33(30 o C) Acetonitrile -44 82 Problems: • Evaporation CH 3 (CH 2 ) 3 CN Valeronitrile -96 139 0.78(19 o C) • Chemical stability • Electrochemical stability Glutaronitrile -29 287 5.3 • Temperatur range • Toxicity CH 3 OCH 2 CH 2 CN 3-Methoxy- -63 164 1.1 • … propionitrile Propylene carbonate -49 241 2.5 γ -Butyrolactone -44 204 1.7 L. Kloo et al., Dalton Trans. 2 0 1 1 , 40 , 10289 (Perspective) 30

  31. Ionic liquids Definition: ”Liquid consisting of only ions and with a melting point < 100 ° C” a) cations R R R N N S R P R R R' N N R' R R R' H/R'' R b) anions Hal - , PF 6 - , BF 4 - , OTf - , NO 3 - , N(CN) 2 - , SCN - , Co(CO) 4 - 31

  32. Ionic liquids Advantages: • No vapour pressurs (almost) • Non-explosive / non-flammable • Thermally & electrochemically very stable • Good solvent for both salts and organics • … not yet toxic … 32

  33. Academically interesting but useless ... Last lecture … 33

  34. Murky crystal ball ... 34

  35. Reasonable performance Intensity I sc V oc Efficiency Fillfactor (W/m 2 ) (mA/cm 2 ) (V) (%) 250 3.0 0.70 0.69 6.0 250 2.5 0.74 0.66 4.9 1000 11.1 0.75 0.60 5.0 1000 8.6 0.77 0.56 3.7 Composition of electrolyte 0.2 M I 2 0.1 M GuanSCN 0.5 M NMBI 2 M n -BuMeIm + I - BuMeIm + N(CN) 2 -

  36. The world record for ILs

  37. Does not solve all problems 16 14 12 AN ( 0 .0 3 M I 2 ) sc (mA/ cm 2 ) 10 I L low ( 0 .0 3 M I 2 ) 8 6 J N N 4 B N N N N 2 EMI TCB 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Light intensity (Wcm -2 ) Mass-transport problems already at 1/ 5 Sun L. Kloo et al. , Dalton Trans. 2 0 0 8 , 38 , 2655 (Perspective) 37

  38. ISILs  Low viscosity High ion mobility  Low vapor pressure High long-term  High chemical and durability electrochemical stability 38

  39. New redox systems R 3+/2+ I - /I 3 - R R Br - /Br 3 - N N N Pseudohalogens Co N N Interhalogens N R R Sulfur-based systems Metal complexes R N N S - N N S N N N S N N N N N T - T 2 39

  40. D35 Dye + Co-based redox system A. Hagfeldt, L. Sun et al ., JACS 2 0 1 0 , 132, 16714 Later: M. Grätzel et al. made the current 13% world record using a similar system (Science 2011) N.B. Not one single component can be changed at a time !!! 40

  41. Sulfur-based alternatives S S S S TTF N N N N N N N S S S S S S McMT BMT 41

  42. Energy in the Future PEDOT CE First ever all ‘organic’ DSC Sensitizer Redox Couple H. Tian, L. Sun, L. Kloo et al ., Angew. Chem. Int. Ed. 2 0 1 0 , 49, 7328 & JACS 2 0 1 1 , 133 , 9413 N.B. Not one single component can be changed at a time !!! 42

  43. Counter electrode effect 0.65 FF: 0.50 η = 6.0% 14 12 O O O O O O 10 J sc (m A/ cm 2 ) S S S S S 8 n O O O O 6 PEDOT 4 350 Pt 2 300 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 250 -Z'' (Ohm ) V oc (V) 200 150 PEDOT 100 Pt 50 0 PEDOT CE shows considerably lower 0 100 200 300 400 500 600 700 800 charge-transfer resistance Z' (Ohm) 43

  44. Hybrid systems X.Yang, L. Sun, L. Kloo et al ., RSC Advances 2 0 1 2 , in print Presence of S 2- suppresses the formation of coloured I 3 - Efficiency > 9%

  45. CMD: Fundamentals Working Electrode - Dye coordination - Dye organization Regeneration - Mechanism of regeneration 45

  46. On the myth about SAM SAM = Self-assembled monolayer http: / / people.bath.ac.uk/ pysabw/ research/ scell/ dssc.htm

  47. The sensitizing dye COO(TBA) (ABT)OOC N Anchoring groups N (e - injection) +II/+III Ru COOH COOH N N NCS NCS Site(?) of re-generation Good dyes have : (reduction) • match energetic condition • broad absorption N 719 • high extinction coefficient • good charge separation ( cf . Kodak)

  48. Towards organic dyes η = 5.1% N3 D5 LUMO N719 HOMO From Organometallic to Organic

  49. Adsorption isotherms Adsorption isotherms by depletion method 4 10 -5 N719 (EtOH) Z907 (MeCN/ t -BuOH 1:1) 3 10 -5 ads [mmol/electrode] 2 10 -5 n 1 10 -5 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 C eq [mM]

  50. AFM: A problem indicator AFM (in electrolyte) 100 µm 2 TiO 2 under 24h: a) t = 0h b) t = 3h c) t= 24h d) After rinsing Aggregation / Precipitation Langmuir ( 2 0 1 0 ) Collaboration: Rob Atkin, Univ. of Newcastle

  51. The NICISS technique NICISS = Neutral Impact Collision Ion Scattering Spectroscopy Collaboration: Gunther Andersson, Flinders Univ.

  52. The NICISS technique N C 15000 O Br P intensity [counts/h/nA] 10000 1.50 molal 0.41 molal 0.20 molal 5000 0.05 molal 0.03 molal 0.01 molal solvent 0 2 3 4 5 6 7 8 TOF [µs] Allows element-specific depth profiling at interfaces Depths up to ~ 20 nm with a few Å resolution

Recommend


More recommend