disjunction property
play

Disjunction Property . . . A derivable or B derivable A B - PowerPoint PPT Presentation

Utrecht University Jeroen Goudsmit The Admissible Rules of BD 2 August 8 th 2013 . Disjunction Property . . . A derivable or B derivable A B derivable . . . A B A or B . . . . . semantics syntax A B A


  1. Utrecht University Jeroen Goudsmit The Admissible Rules of BD 2 August 8 th 2013

  2. . Disjunction Property . . . A derivable or B derivable A ∨ B derivable

  3. . . . ⊢ A ∨ B ⊢ A or ⊢ B

  4. . . . . . semantics syntax ⊢ A ∨ B ⊢ A or ⊢ B

  5. . . . . . semantics syntax ⊢ A ∨ B ⊢ A or ⊢ B

  6. . . . . . semantics syntax ⊢ A ∨ B ⊢ A or ⊢ B

  7. . . . . . semantics syntax ⊢ A ∨ B ⊢ A or ⊢ B

  8. . Logic of Depth n BD n IPC bd n bd 0 = ⊥ bd n +1 = p n +1 ∨ ( p n +1 → bd n ) .

  9. . Logic of Depth n bd 0 = ⊥ bd n +1 = p n +1 ∨ ( p n +1 → bd n ) . BD n = IPC + bd n

  10. . Overview .

  11. . Overview .

  12. . Overview . . Axiomatising Admissibility in BD 2

  13. . Overview . . . Admissible Approximation Axiomatising Admissibility in BD 2

  14. . Overview . . . . Admissible Approximation Projectivity Axiomatising Admissibility in BD 2

  15. . . A . . . / ∆ admissible

  16. . . A . . . . σ A is derivable / ∆ admissible σ C is derivable for some C ∈ ∆

  17. . . A . . . . . σ A is derivable ∆ admissible σ C is derivable for some C ∈ ∆

  18. . . . ¬ C → A ∨ B ( ¬ C → A ) ∨ ( ¬ C → B )

  19. . . . ¬ C → A ∨ B { ¬ C → A , ¬ C → B }

  20. . . . . ¬¬ Disjunction Property ∨ ∆ {¬¬ C | C ∈ ∆ }

  21. . An axiomatisation of admissibility is a set of rules R with ⊢ R = .

  22. . . A ⊢ B

  23. . . . A ⊢ B A . B

  24. . Admissible Approximation A ⊢ B iff A . B

  25. . If admissible approximations exists, and if A ⊢ R A then . ⊆ ⊢ R .

  26. . If admissible approximations exists, and if A ⊢ R A and R ⊆ . then . = ⊢ R .

  27. . Visser Rules . . ( ∨ ∆ → A ) → ∨ ∆ . ∨ { ( ∨ ∆ → A ) → C � } � C ∈ ∆

  28. . Jankov–de Jongh formulae In suitable models have iff iff k ≤ l l ⊩ up k l ̸≤ k l ⊩ nd k

  29. . .

  30. . . k

  31. . . k

  32. . . k . up k

  33. . . k

  34. . . k . nd k

  35. . .

  36. . . . . w n w 1 . . .

  37. . . . . w n . w 1 . . .

  38. . . . . w n . w 1 . . .

  39. . . . . w n . w 1 . . .

  40. . . . . . w n . w 1 semantics . . .

  41. . . . . . . w n . w 1 semantics . . . syntax

  42. . . nd w i . n . w n n . . . . w 1 semantics . . . syntax ( n ) ∨ nd w i → ∨ n → ∨ i = 1 up w i i = 1 i = 1 ( n ) ∨ ∨ nd w i → ∨ n → nd w j i = 1 up w i j = 1 i = 1

  43. . . . . w n . . . . w 1 semantics . . . syntax (∨ ∆ ) → ∨ ∆ → A (∨ ∆ ) ∨ → A → C C ∈ ∆

  44. . A is projective when A A ⊢ σ A and A ⊢ σ B ≡ B for some σ .

  45. . A is projective when ⊢ σ A and A ⊢ σ B ≡ B for some σ . A = A

  46. . Ghilardi (1999) . .

  47. . Ghilardi (1999) .

  48. . Ghilardi (1999) . . A

  49. . Ghilardi (1999) . . A .

  50. . Ghilardi (1999) . . A .

  51. . Iemhoff (2001) A formula is IPC-projective iff it admits DP and V n for n

  52. . Goudsmit and Iemhoff (2012) it admits DP and V n A formula is T n -projective iff for n ≥ 2

  53. . Visser Rules . . . ( ∨ ∆ → A ) → ∨ ∆ ( ∨ ∆ → A ) → C ∨ { � } � C ∈ ∆

  54. . Skura (1992) . . ( ∨ ∆ → A ) → ∨ ∆ ¬¬ (( ∨ ∆ → A ) → C ) . { � } � C ∈ ∆

  55. . it admits S A formula is BD 2 -projective iff

  56. which shows A . . To each A there is set Γ of BD 2 -projectives with ∨ ∨ A ⊢ S Γ and Γ ⊢ A

  57. . To each A there is set Γ of BD 2 -projectives with ∨ ∨ A ⊢ S Γ and Γ ⊢ A which shows A = ∨ Γ .

  58. . Goudsmit (2013): S axiomatises admissibility of BD 2

  59. .

  60. . Preprint Series 297, pp. 1–18. : 0929-0710. : Intermediate Propositional Logics”. In: Notre Dame Journal of Skura, Tomasz F. (1992). “Refutation Calculi for Certain pp. 281–294. : 00224812. JSTOR: 2694922. Propositional Logic”. In: The Journal of Symbolic Logic 66.1, Iemhoff, Rosalie (2001). “On the Admissible Rules of Intuitionistic http://phil.uu.nl/preprints/lgps/number/297. admissible rules in Gabbay-de Jongh logics”. In: Logic Group References I Goudsmit, Jeroen P. and Rosalie Iemhoff (2012). “On unification and http://phil.uu.nl/preprints/lgps/number/313. In: Logic Group Preprint Series 313, pp. 1–23. : 2586506. Journal of Symbolic Logic 64.2, pp. 859–880. : 00224812. JSTOR: Ghilardi, Silvio (1999). “Unification in Intuitionistic Logic”. In: The Formal Logic 33.4, pp. 552–560. : 10.1305/ndjfl/1093634486. Goudsmit, Jeroen P. (2013). “The Admissible Rules of BD 2 and GSc”.

Recommend


More recommend