direct numerical simulation of
play

Direct Numerical Simulation of Drag Reduction with Uniform Blowing - PowerPoint PPT Presentation

European Drag Reduction and Flow Control Meeting Rome, Apr. 3-6, 2017 Direct Numerical Simulation of Drag Reduction with Uniform Blowing over a Two-dimensional Roughness Eisuke Mori 1 , Maurizio Quadrio 2 and Koji Fukagata 1 1 Keio University,


  1. European Drag Reduction and Flow Control Meeting Rome, Apr. 3-6, 2017 Direct Numerical Simulation of Drag Reduction with Uniform Blowing over a Two-dimensional Roughness Eisuke Mori 1 , Maurizio Quadrio 2 and Koji Fukagata 1 1 Keio University, Japan 2 Politecnico di Milano, Italy

  2. Uniform blowing (UB) โ€ข Drag contribution in a channel flow with UB(/US) ๐Ÿ‘ ๐Ÿ‘ ๐‘พ ๐’™ : Blowing velocity ๐‘ซ ๐’ˆ = ๐Ÿ๐Ÿ‘ โˆ’๐’— โ€ฒ ๐’˜ โ€ฒ ๐’†๐’› + ๐Ÿ๐Ÿ‘ เถฑ ๐Ÿ โˆ’ ๐’› ๐Ÿ โˆ’ ๐’› เดฅ โˆ’๐Ÿ๐Ÿ‘๐‘พ ๐’™ เถฑ ๐’—๐’†๐’› ๐’๐Ÿ ๐’„ ๐Ÿ ๐Ÿ Viscous Turbulent Convective (=UB/US) Contribution contribution contribution (= laminar drag, const. ) (Fukagata et al., Phys. Fluids , 2002) โ€ข Excellent performance (about 45% by ๐‘พ ๐’™ = ๐Ÿ. ๐Ÿ”%๐‘ฝ โˆž ) โ€ข Unknown over a rough wall (Kametani & Fukagata, J. Fluid Mech. , 2011) On a boundary layer, White: vortex core, Colors: wall shear stress E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 2/18

  3. UB over a rough wall Experimental results so far โ€ข Similar to the smooth-wall cases - Schetz and Nerney, AIAA J. , 1977 - Voisinet, 1979 โ€ข Opposite behavior (drag increased, turbulent intensity suppressed) - Miller et al., Exp. Fluids , 2014 Contradicting remarks exist E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 3/18

  4. Goal Investigate the interaction between roughness and UB for drag reduction using numerical simulation - DNS of turbulent channel flow - Drag reduction performance and mechanism - Combined effect of UB and roughness E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 4/18

  5. Numerical procedure โ€ข Based on FD code (for wall deformation) (Nakanishi et al., Int. J. Heat Fluid Fl. , 2012) โ€ข Constant flow rate, ๐’๐Ÿ ๐’„ = ๐Ÿ‘๐‘ฝ ๐’„ ๐œบ/๐ƒ = ๐Ÿ”๐Ÿ•๐Ÿ๐Ÿ - so that ๐’๐Ÿ ๐Š โ‰ˆ ๐Ÿ๐Ÿ—๐Ÿ in a plane channel (K.M.M.) โ€ข โˆ†๐’š + = ๐Ÿ“. ๐Ÿ“, ๐Ÿ. ๐Ÿ˜๐Ÿ’ < โˆ†๐’› + < ๐Ÿ•, โˆ†๐’œ + = ๐Ÿ”. ๐Ÿ˜ โ€ข UB magnitude: ฮค ๐‘พ ๐’™ ๐‘ฝ ๐’„ = ๐Ÿ, ๐Ÿ. ๐Ÿ%, ๐Ÿ. ๐Ÿ”%, ๐Ÿ% ROUGH CASE SMOOTH CASE E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 5/18

  6. Model of rough wall Roughness displacement ๐Ÿ— ๐‘ฉ ๐’‹ ๐ญ๐ฃ๐จ ๐Ÿ‘๐’‹๐†๐’š ๐’† ๐’š = ๐œบ เท ฮค ๐‘ด ๐’š ๐Ÿ‘ ๐’‹=๐Ÿ (E. Napoli et al., J. Fluid Mech. , 2008) ๐œบ : channel half height ๐‘ด ๐’š : Channel length, ๐Ÿ“๐†๐œบ ๐’† ๐’š ๐ง๐›๐ฒ = ๐Ÿ. ๐Ÿ๐Ÿ๐œบ ๐‘ฉ ๐’‹ : Amplitude of each sinusoid ๐‘ฉ ๐’‹ = แ‰Š ๐Ÿ, ๐ ๐ฉ๐ฌ ๐’‹ = ๐Ÿ ๐’› = ๐Ÿ ๐Ÿ, ๐Ÿ , ๐ ๐ฉ๐ฌ ๐’‹ โ‰  ๐Ÿ (Defined randomly) with rescaling so that ๐’† ๐’š = ๐Ÿ. ๐Ÿ๐Ÿ”๐œบ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 6/18

  7. The result of the base flow โˆ†๐‘‰ + ~6.5 + = ๐Ÿ’๐Ÿ— ๐’ ๐’• ๐ท ๐ธ๐‘ž = 2๐ท ๐ธave โˆ’ (๐ท ๐ธ๐‘” + ๐ท ๐ธ๐‘”,๐‘ฃ ) ๐ท ๐ธave : Overall drag coefficient ๐ท ๐ธ๐‘” : ๐ท ๐‘” of the rough wall side ๐ท ๐ธ๐‘”,๐‘ฃ : ๐ท ๐‘” of the smooth wall side โ€œTransitionally - rough regimeโ€ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 7/18

  8. The result of UB SMOOTH CASE ROUGH CASE Total, ๐‘† ๐Ÿ๐Ÿ% ๐Ÿ’๐Ÿ–% ๐Ÿ”๐Ÿ˜% ๐Ÿ–% ๐Ÿ‘๐Ÿ•% ๐Ÿ“๐Ÿ’% ๐‘† = 1 โˆ’ ๐ท ๐ธ,ctr ๐ท ๐ธ,ctr : controlled ๐ท ๐ธ,nc ๐ท ๐ธ,nc : no control E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 8/18

  9. The result of UB SMOOTH CASE ROUGH CASE Total, ๐‘† ๐Ÿ๐Ÿ% ๐Ÿ’๐Ÿ–% ๐Ÿ”๐Ÿ˜% ๐Ÿ–% ๐Ÿ‘๐Ÿ•% ๐Ÿ“๐Ÿ’% Friction, ๐‘† ๐บ ๐Ÿ๐Ÿ% ๐Ÿ’๐Ÿ–% ๐Ÿ”๐Ÿ˜% ๐Ÿ˜% ๐Ÿ’๐Ÿ“% ๐Ÿ”๐Ÿ–% Pressure, ๐‘† ๐‘„ ๐Ÿ”% ๐Ÿ๐Ÿ˜% ๐Ÿ’๐Ÿ‘% - - E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 9/18

  10. Friction drag reduction mechanism Bulk mean streamwise velocity SMOOTH CASE ROUGH CASE ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = 0 Black: ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = 0.1% Green: ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = 0.5% Red: ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = 1% Blue: + ๐’† ๐’š ๐ง๐›๐ฒ +nc: normalization with no control case ๐’— ๐Š E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 10/18

  11. How does pressure drag decrease? averaged in the spanwise and time Pressure contours dashed lines: zero contour ๐‘ž +nc ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = ๐Ÿ ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = ๐Ÿ% + ๐’† ๐’š ๐ง๐›๐ฒ + ๐’† ๐’š ๐ง๐ฃ๐จ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 11/18

  12. โ€œSmoothing effectโ€ averaged in the spanwise and time Wall-normal velocity contours dashed lines: zero contour ๐‘ค +nc + = 38 ๐‘™ ๐‘ก ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = ๐Ÿ + = 20 ๐‘™ ๐‘ก ฮค ๐‘ฝ ๐’„ ๐‘พ ๐’™ = ๐Ÿ% + ๐’† ๐’š ๐ง๐›๐ฒ + ๐’† ๐’š ๐ง๐ฃ๐จ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 12/18

  13. Outer layer similarity with UB Velocity defect Base flow (No controlled) of 1% UB case of one-side rough wall one-side rough wall ๐œบ ๐’– : distance from a wall to the Smooth side minimum RMS location (K. Bhaganagar et al., Rough side Flow, Turbul. Combust. , 2004) E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 13/18

  14. Comparison with smooth case Velocity defect 1% UB case of 1% UB case of both-side smooth wall one-side rough wall Suction Smooth side side Blowing Rough side side E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 14/18

  15. Comparison with smooth case Velocity defect 1% UB case of 1% UB case of both-side smooth wall one-side rough wall Same tendency, but quantitatively weakened E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 15/18

  16. Stevensonโ€™s law of the wall Plots using Stevensonโ€™s law of the wall (Stevenson, 1963) 2 = 1 ๐œ† ln ๐‘ง + + ๐ถ + ๐‘‰ + โˆ’ 1 1 + ๐‘Š ๐‘ฅ + ๐‘Š ๐‘ฅ ๐‘‰ +๐‘‡ Roughness function โˆ†๐‘‰ + Modified law is suggested: 2 = 1 ๐œ† ln ๐‘ง + + ๐ถ โˆ’ โˆ†๐‘‰ + + ๐‘‰ + โˆ’ 1 1 + ๐‘Š ๐‘ฅ + ๐‘Š ๐‘ฅ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 16/18

  17. ๐จ๐+ Normalization by ๐’— ๐Š Drag reduction rate, Drag reduction, โˆ†๐‘ซ ๐‘ฌ = ๐‘ซ ๐‘ฌ,๐จ๐ โˆ’ ๐‘ซ ๐‘ฌ,๐๐ฎ๐ฌ ๐‘† + ๐‘† becomes similar when plotted with ๐‘Š nc: no control ๐‘ฅ ctr: controlled E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 17/18

  18. Concluding remarks DNS of turbulent channel flow is performed over a rough wall with UB โ€ข UB is effective over a rough wall - Almost same in drag reduction rate, but larger in drag +nc ) reduction amount (when normalized by ๐‘ฃ ๐œ โ€ข Drag reduction mechanisms are considered - Friction drag is reduced by wall-normal convection - Pressure drag is reduced by โ€œsmoothing effectโ€ โ€ข Combined effect (UB + roughness) slightly exists โ€ข Modified Stevensonโ€™s law of the wall is suggested E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 18/18

  19. Thank you for your kind attention

  20. Background Turbulence - Huge drag - Environmental problems - High operation cost - How to control ? E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 21/18

  21. Flow control classification (M. Gad-el-Hak, J. Aircraft , 2001) Flow control strategies Active Passive Feedback Feedforward - Uniform blowing E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 22/18

  22. Governing equations (S. Kang & H. Choi, Phys. Fluids , 2000) Incompressible Continuity and Navier-Stokes in ๐„ ๐’‹ coordinate ๐›œ๐’— ๐’‹ = โˆ’๐‘ป ๐›œ๐„ ๐’‹ ๐ ๐Ÿ‘ ๐’— ๐’‹ ๐›œ ๐’— ๐’‹ ๐’— ๐’Œ ๐›œ๐’— ๐’‹ โˆ’ ๐๐’’ + ๐Ÿ โˆ’ ๐’†๐‘ธ ๐๐’– = โˆ’ ๐œบ ๐’‹๐Ÿ + ๐‘ป ๐’‹ ๐›œ๐„ ๐’Œ ๐›œ๐„ ๐’‹ ๐’๐Ÿ ๐’„ ๐›œ๐„ ๐’Œ ๐„ ๐’Œ ๐ž๐„ ๐Ÿ where ๐œ– 2 ๐‘ฃ ๐‘— ๐œ– 2 ๐‘ฃ ๐‘— ๐œ– ๐‘ฃ ๐‘— ๐‘ฃ ๐‘˜ ๐œ– ๐œš ๐‘˜ ๐œš ๐‘˜ ๐œ–๐‘ฃ ๐‘— ๐‘’๐‘ž ๐œ€ ๐‘—๐‘˜ + 1 2 + 1 ๐œ–๐‘ฃ ๐‘— ๐‘‡ ๐‘— = โˆ’๐œ’ ๐‘ข โˆ’ ๐œš ๐‘˜ โˆ’ ๐œš ๐‘˜ ๐‘†๐‘“ 2๐œš ๐‘˜ + ๐œš ๐‘˜ ๐œš ๐‘˜ ๐œ–๐œŠ 2 ๐œ–๐œŠ 2 ๐‘’๐œŠ 2 ๐œ–๐œŠ ๐‘˜ ๐œŠ 2 ๐œ–๐œŠ 2 2 ๐œ–๐œŠ 2 ๐œ–๐œŠ 2 ๐œ–๐‘ฃ ๐‘— 1 ๐œ–๐œƒ + ๐œ–๐œƒ 0 ๐‘‡ = ๐œš ๐‘˜ โˆ’ 1 + ๐œƒ ๐œŠ 2 , for j = 1,3 ๐œš ๐‘˜ = ๐œ’ ๐‘˜ โˆ’ ๐œ€ ๐‘˜2 ๐œ–๐œŠ 2 ๐œ–๐œŠ ๐‘— ๐œ–๐œŠ ๐‘— ๐œ’ ๐‘˜ = 1 1 + ๐œƒ , for j = 2 E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 23/18

  23. Coordinate transformation (S. Kang & H. Choi, Phys. Fluids , 2000) Calculation grids: ๐„ ๐’‹ (Cartesian with extra force) ๐’š = ๐„ ๐Ÿ ๐’› = ๐› ๐Ÿ‘ ๐Ÿ + ๐›‰ + ๐›‰ ๐ž แ‰ Actual grid points allocation ๐’œ = ๐› ๐Ÿ’ ( ๐‘ฆ, ๐‘ง, ๐‘จ : physical coordinate) ๐›‰ โ‰ก ๐›‰ ๐ฏ โˆ’ ๐›‰ ๐’† ฮค ๐Ÿ‘ = โˆ’ ๐’† ๐ฒ ฮค ๐Ÿ‘ ๐›‰ ๐ž = ๐ฌ ๐ฒ , ๐›‰ ๐’— = ๐Ÿ ๐›‰ ๐ž , ๐›‰ ๐ฏ : displacement of wall lower/upper wall E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 24/18

Recommend


More recommend