European Drag Reduction and Flow Control Meeting Rome, Apr. 3-6, 2017 Direct Numerical Simulation of Drag Reduction with Uniform Blowing over a Two-dimensional Roughness Eisuke Mori 1 , Maurizio Quadrio 2 and Koji Fukagata 1 1 Keio University, Japan 2 Politecnico di Milano, Italy
Uniform blowing (UB) โข Drag contribution in a channel flow with UB(/US) ๐ ๐ ๐พ ๐ : Blowing velocity ๐ซ ๐ = ๐๐ โ๐ โฒ ๐ โฒ ๐๐ + ๐๐ เถฑ ๐ โ ๐ ๐ โ ๐ เดฅ โ๐๐๐พ ๐ เถฑ ๐๐๐ ๐๐ ๐ ๐ ๐ Viscous Turbulent Convective (=UB/US) Contribution contribution contribution (= laminar drag, const. ) (Fukagata et al., Phys. Fluids , 2002) โข Excellent performance (about 45% by ๐พ ๐ = ๐. ๐%๐ฝ โ ) โข Unknown over a rough wall (Kametani & Fukagata, J. Fluid Mech. , 2011) On a boundary layer, White: vortex core, Colors: wall shear stress E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 2/18
UB over a rough wall Experimental results so far โข Similar to the smooth-wall cases - Schetz and Nerney, AIAA J. , 1977 - Voisinet, 1979 โข Opposite behavior (drag increased, turbulent intensity suppressed) - Miller et al., Exp. Fluids , 2014 Contradicting remarks exist E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 3/18
Goal Investigate the interaction between roughness and UB for drag reduction using numerical simulation - DNS of turbulent channel flow - Drag reduction performance and mechanism - Combined effect of UB and roughness E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 4/18
Numerical procedure โข Based on FD code (for wall deformation) (Nakanishi et al., Int. J. Heat Fluid Fl. , 2012) โข Constant flow rate, ๐๐ ๐ = ๐๐ฝ ๐ ๐บ/๐ = ๐๐๐๐ - so that ๐๐ ๐ โ ๐๐๐ in a plane channel (K.M.M.) โข โ๐ + = ๐. ๐, ๐. ๐๐ < โ๐ + < ๐, โ๐ + = ๐. ๐ โข UB magnitude: ฮค ๐พ ๐ ๐ฝ ๐ = ๐, ๐. ๐%, ๐. ๐%, ๐% ROUGH CASE SMOOTH CASE E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 5/18
Model of rough wall Roughness displacement ๐ ๐ฉ ๐ ๐ญ๐ฃ๐จ ๐๐๐๐ ๐ ๐ = ๐บ เท ฮค ๐ด ๐ ๐ ๐=๐ (E. Napoli et al., J. Fluid Mech. , 2008) ๐บ : channel half height ๐ด ๐ : Channel length, ๐๐๐บ ๐ ๐ ๐ง๐๐ฒ = ๐. ๐๐๐บ ๐ฉ ๐ : Amplitude of each sinusoid ๐ฉ ๐ = แ ๐, ๐ ๐ฉ๐ฌ ๐ = ๐ ๐ = ๐ ๐, ๐ , ๐ ๐ฉ๐ฌ ๐ โ ๐ (Defined randomly) with rescaling so that ๐ ๐ = ๐. ๐๐๐บ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 6/18
The result of the base flow โ๐ + ~6.5 + = ๐๐ ๐ ๐ ๐ท ๐ธ๐ = 2๐ท ๐ธave โ (๐ท ๐ธ๐ + ๐ท ๐ธ๐,๐ฃ ) ๐ท ๐ธave : Overall drag coefficient ๐ท ๐ธ๐ : ๐ท ๐ of the rough wall side ๐ท ๐ธ๐,๐ฃ : ๐ท ๐ of the smooth wall side โTransitionally - rough regimeโ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 7/18
The result of UB SMOOTH CASE ROUGH CASE Total, ๐ ๐๐% ๐๐% ๐๐% ๐% ๐๐% ๐๐% ๐ = 1 โ ๐ท ๐ธ,ctr ๐ท ๐ธ,ctr : controlled ๐ท ๐ธ,nc ๐ท ๐ธ,nc : no control E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 8/18
The result of UB SMOOTH CASE ROUGH CASE Total, ๐ ๐๐% ๐๐% ๐๐% ๐% ๐๐% ๐๐% Friction, ๐ ๐บ ๐๐% ๐๐% ๐๐% ๐% ๐๐% ๐๐% Pressure, ๐ ๐ ๐% ๐๐% ๐๐% - - E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 9/18
Friction drag reduction mechanism Bulk mean streamwise velocity SMOOTH CASE ROUGH CASE ฮค ๐ฝ ๐ ๐พ ๐ = 0 Black: ฮค ๐ฝ ๐ ๐พ ๐ = 0.1% Green: ฮค ๐ฝ ๐ ๐พ ๐ = 0.5% Red: ฮค ๐ฝ ๐ ๐พ ๐ = 1% Blue: + ๐ ๐ ๐ง๐๐ฒ +nc: normalization with no control case ๐ ๐ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 10/18
How does pressure drag decrease? averaged in the spanwise and time Pressure contours dashed lines: zero contour ๐ +nc ฮค ๐ฝ ๐ ๐พ ๐ = ๐ ฮค ๐ฝ ๐ ๐พ ๐ = ๐% + ๐ ๐ ๐ง๐๐ฒ + ๐ ๐ ๐ง๐ฃ๐จ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 11/18
โSmoothing effectโ averaged in the spanwise and time Wall-normal velocity contours dashed lines: zero contour ๐ค +nc + = 38 ๐ ๐ก ฮค ๐ฝ ๐ ๐พ ๐ = ๐ + = 20 ๐ ๐ก ฮค ๐ฝ ๐ ๐พ ๐ = ๐% + ๐ ๐ ๐ง๐๐ฒ + ๐ ๐ ๐ง๐ฃ๐จ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 12/18
Outer layer similarity with UB Velocity defect Base flow (No controlled) of 1% UB case of one-side rough wall one-side rough wall ๐บ ๐ : distance from a wall to the Smooth side minimum RMS location (K. Bhaganagar et al., Rough side Flow, Turbul. Combust. , 2004) E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 13/18
Comparison with smooth case Velocity defect 1% UB case of 1% UB case of both-side smooth wall one-side rough wall Suction Smooth side side Blowing Rough side side E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 14/18
Comparison with smooth case Velocity defect 1% UB case of 1% UB case of both-side smooth wall one-side rough wall Same tendency, but quantitatively weakened E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 15/18
Stevensonโs law of the wall Plots using Stevensonโs law of the wall (Stevenson, 1963) 2 = 1 ๐ ln ๐ง + + ๐ถ + ๐ + โ 1 1 + ๐ ๐ฅ + ๐ ๐ฅ ๐ +๐ Roughness function โ๐ + Modified law is suggested: 2 = 1 ๐ ln ๐ง + + ๐ถ โ โ๐ + + ๐ + โ 1 1 + ๐ ๐ฅ + ๐ ๐ฅ E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 16/18
๐จ๐+ Normalization by ๐ ๐ Drag reduction rate, Drag reduction, โ๐ซ ๐ฌ = ๐ซ ๐ฌ,๐จ๐ โ ๐ซ ๐ฌ,๐๐ฎ๐ฌ ๐ + ๐ becomes similar when plotted with ๐ nc: no control ๐ฅ ctr: controlled E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 17/18
Concluding remarks DNS of turbulent channel flow is performed over a rough wall with UB โข UB is effective over a rough wall - Almost same in drag reduction rate, but larger in drag +nc ) reduction amount (when normalized by ๐ฃ ๐ โข Drag reduction mechanisms are considered - Friction drag is reduced by wall-normal convection - Pressure drag is reduced by โsmoothing effectโ โข Combined effect (UB + roughness) slightly exists โข Modified Stevensonโs law of the wall is suggested E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 18/18
Thank you for your kind attention
Background Turbulence - Huge drag - Environmental problems - High operation cost - How to control ? E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 21/18
Flow control classification (M. Gad-el-Hak, J. Aircraft , 2001) Flow control strategies Active Passive Feedback Feedforward - Uniform blowing E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 22/18
Governing equations (S. Kang & H. Choi, Phys. Fluids , 2000) Incompressible Continuity and Navier-Stokes in ๐ ๐ coordinate ๐๐ ๐ = โ๐ป ๐๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐๐ ๐ โ ๐๐ + ๐ โ ๐๐ธ ๐๐ = โ ๐บ ๐๐ + ๐ป ๐ ๐๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐๐ ๐ ๐ ๐ ๐๐ ๐ where ๐ 2 ๐ฃ ๐ ๐ 2 ๐ฃ ๐ ๐ ๐ฃ ๐ ๐ฃ ๐ ๐ ๐ ๐ ๐ ๐ ๐๐ฃ ๐ ๐๐ ๐ ๐๐ + 1 2 + 1 ๐๐ฃ ๐ ๐ ๐ = โ๐ ๐ข โ ๐ ๐ โ ๐ ๐ ๐๐ 2๐ ๐ + ๐ ๐ ๐ ๐ ๐๐ 2 ๐๐ 2 ๐๐ 2 ๐๐ ๐ ๐ 2 ๐๐ 2 2 ๐๐ 2 ๐๐ 2 ๐๐ฃ ๐ 1 ๐๐ + ๐๐ 0 ๐ = ๐ ๐ โ 1 + ๐ ๐ 2 , for j = 1,3 ๐ ๐ = ๐ ๐ โ ๐ ๐2 ๐๐ 2 ๐๐ ๐ ๐๐ ๐ ๐ ๐ = 1 1 + ๐ , for j = 2 E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 23/18
Coordinate transformation (S. Kang & H. Choi, Phys. Fluids , 2000) Calculation grids: ๐ ๐ (Cartesian with extra force) ๐ = ๐ ๐ ๐ = ๐ ๐ ๐ + ๐ + ๐ ๐ แ Actual grid points allocation ๐ = ๐ ๐ ( ๐ฆ, ๐ง, ๐จ : physical coordinate) ๐ โก ๐ ๐ฏ โ ๐ ๐ ฮค ๐ = โ ๐ ๐ฒ ฮค ๐ ๐ ๐ = ๐ฌ ๐ฒ , ๐ ๐ = ๐ ๐ ๐ , ๐ ๐ฏ : displacement of wall lower/upper wall E.Mori, M.Quadrio, K.Fukagata DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 24/18
Recommend
More recommend