direct numerical simulation of
play

Direct Numerical Simulation of Drag Reduction with Uniform Blowing - PowerPoint PPT Presentation

11 th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurement Palermo, Sept. 21-23, 2016 Direct Numerical Simulation of Drag Reduction with Uniform Blowing over a Rough Wall Eisuke Mori 1,2 , Maurizio Quadrio 2 and


  1. 11 th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurement Palermo, Sept. 21-23, 2016 Direct Numerical Simulation of Drag Reduction with Uniform Blowing over a Rough Wall Eisuke Mori 1,2 , Maurizio Quadrio 2 and Koji Fukagata 1 1 Keio University, Japan 2 Politecnico di Milano, Italy

  2. Background Turbulence - Huge drag - Environmental problems - High operation cost - How to control ? E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 2/15

  3. Flow control classification (M. Gad-el-Hak, J. Aircraft , 2001) Flow control strategies Active Passive Feedback Feedforward - Uniform blowing E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 3/15

  4. Uniform blowing (UB) (Sumitani & Kasagi, AIAA J. , 1995 Kametani & Fukagata, J. Fluid Mech. , 2011) β€’ Drag contribution in a channel flow with UB(/US) πŸ‘ πŸ‘ 𝑾 𝒙 : Blowing velocity 𝑫 π’ˆ = πŸπŸ‘ βˆ’π’— β€² π’˜ β€² 𝒆𝒛 + πŸπŸ‘ ΰΆ± 𝟐 βˆ’ 𝒛 𝟐 βˆ’ 𝒛 ΰ΄₯ βˆ’πŸπŸ‘π‘Ύ 𝒙 ΰΆ± 𝒗𝒆𝒛 π’πŸ 𝒄 𝟏 𝟏 Viscous Turbulent Convective (=UB/US) Contribution contribution contribution (= laminar drag, const. ) (Fukagata et al., Phys. Fluids , 2002) β€’ Excellent performance (about 45% by 𝑾 𝒙 = 𝟏. πŸ”%𝑽 ∞ ) β€’ Unknown over a rough wall On a boundary layer, White: vortex core, Colors: wall shear stress E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 4/15

  5. Goal Investigate the interaction between roughness and UB for drag reduction - DNS of turbulent channel flow - Focus on drag reduction performance and mechanism E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 5/15

  6. Numerical procedure β€’ Based on FD code (for wall deformation) (Nakanishi et al., Int. J. Heat Fluid Fl. , 2012) β€’ Constant flow rate, π’πŸ 𝒄 = πŸ‘π‘½ 𝒄 𝜺/𝝃 = πŸ”πŸ•πŸπŸ - so that π’πŸ 𝝊 β‰ˆ πŸπŸ—πŸ in a plane channel (K.M.M.) β€’ βˆ†π’š + = πŸ“. πŸ“, 𝟏. πŸ˜πŸ’ < βˆ†π’› + < πŸ•, βˆ†π’œ + = πŸ”. 𝟘 β€’ UB magnitude: 𝑁 = 0, 𝟏. 𝟏𝟏𝟐, 𝟏. πŸπŸπŸ” ROUGH CASE SMOOTH CASE E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 6/15

  7. Model of rough wall (E. Napoli et al., J. Fluid Mech. , 2008) Roughness displacement πŸ“ 𝑩 𝒋 𝐭𝐣𝐨 πŸ‘ 𝒋 π†π’š 𝒆 π’š = 𝜺 ෍ Ξ€ 𝑴 π’š πŸ‘ 𝒋=𝟐 𝜺 : channel half height 𝑴 π’š : Channel length, πŸ“π†πœΊ 𝒆 π’š 𝐧𝐛𝐲 = 𝟏. 𝟐𝟐𝜺 𝑩 𝒋 : Amplitude of each sinusoid 𝑩 𝒋 = α‰Š 𝟐, 𝐠𝐩𝐬 𝒋 = 𝟐 𝒛 = 𝟏 𝟏, 𝟐 , 𝐠𝐩𝐬 𝒋 β‰  𝟐 (Defined randomly) with rescaling so that 𝒆 π’š = 𝟏. πŸπŸ”πœΊ E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 7/15

  8. Coordinate transformation (S. Kang & H. Choi, Phys. Fluids , 2000) Calculation grids: 𝝄 𝒋 (Cartesian with extra force) π’š = 𝝄 𝟐 𝒛 = 𝛐 πŸ‘ 𝟐 + 𝛉 + 𝛉 𝐞 ቐ Actual grid points allocation π’œ = 𝛐 πŸ’ ( 𝑦, 𝑧, 𝑨 : physical coordinate) 𝛉 ≑ 𝛉 𝐯 βˆ’ 𝛉 𝒆 Ξ€ πŸ‘ = βˆ’ 𝒆 𝐲 Ξ€ πŸ‘ 𝛉 𝐞 = 𝐬 𝐲 , 𝛉 𝒗 = 𝟏 𝛉 𝐞 , 𝛉 𝐯 : displacement of wall lower/upper wall E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 8/15

  9. Post processing β€’ Drag coefficient decomposition for rough case 8 𝑒ഀ 𝑣 𝐷 𝐸𝑣𝑔 = ቀ Re 𝑐 𝑒𝑧 𝜊 2 =2 𝐷 πΈπ‘šπ‘” = 8 𝑒𝑣 𝑒𝑀 ቀ + ቀ (Friction component) Re 𝑐 𝑒𝑧 𝜊 2 =0 𝑒𝑦 𝜊 2 =0 𝐷 πΈπ‘šπ‘ž = βˆ’16 𝑒𝑄 βˆ’ 𝐷 πΈπ‘šπ‘” + 𝐷 𝐸𝑣𝑔 (Pressure component) π‘’πœŠ 1 β€’ Drag reduction rate βˆ†π· 𝐸 𝑆 πΈπ‘š = Γ— 100 [%] 𝐷 𝐸,𝑁=0 Only focusing on lower side , subscript β€œ π‘š ” omitted hereafter E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 9/15

  10. Drag reduction rate, 𝑺 𝑬 SMOOTH CASE ROUGH CASE ↓ 𝟐𝟐% ↓ πŸ’πŸ–% ↓ πŸ–% ↓ πŸ‘πŸ•% Total 𝑆 𝐸 ↓ 𝟐𝟐% ↓ πŸ’πŸ–% ↓ 𝟘% ↓ πŸ’πŸ“% Friction 𝑆 𝐸,𝐺 ↓ πŸ”% ↓ 𝟐𝟘% Pressure 𝑆 𝐸,𝑄 - - E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 10/15

  11. How does friction drag decrease? Bulk mean streamwise velocity Smooth Rough Black: 𝑁 = 0 Green: 𝑁 = 0.001 Red: 𝑁 = 0.005 Normalization based on 𝑁 = 0 E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 11/15

  12. How does pressure drag decrease? averaged in the spanwise and time Pressure contours dashed lines: zero contour 𝑡 = 𝟏 𝑡 = 𝟏. πŸπŸπŸ” π‘ž + 𝒆 π’š 𝐧𝐛𝐲 𝒆 π’š 𝐧𝐣𝐨 E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 12/15

  13. Stream function Solid lines: 𝑁 = 0 Dashed lines: 𝑁 = 0.005 Uniform Blowing E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 13/15

  14. In practical applications Drag reduction amount, βˆ†π‘« 𝑬 = 𝑫 𝑬,𝑡=𝟏 βˆ’ 𝑫 𝑬,𝑡=𝟏.𝟐,𝟏.πŸ” [%] E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 14/15

  15. Concluding remarks DNS of turbulent channel flow over a rough wall with UB β€’ UB is effective over rough walls - Lower drag reduction rate ( 7%, πŸ‘πŸ•% / 11%, πŸ’πŸ–% in rough / smooth case, with 𝑁 = 0.001, 0.005 ) β€’ Drag reduction mechanism - Friction drag by wall-normal convection (=conventional) - Pressure drag by prevention of stagnant flow β€’ Outlook toward practical applications - More saving opportunity over rough walls E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 15/15

  16. Future plans β€’ Another drag reduction technique on rough surface - Spanwise oscillation (ongoing) β€’ Assessment of net energy? (should be external flow) β€’ Calculation at higher Reynolds number? β€’ Other types of rough surfaces (e.g., 3D structure)? E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 17/15

  17. Uniform blowing (UB) (Sumitani & Kasagi, AIAA J. , 1995 Kametani & Fukagata, J. Fluid Mech. , 2011) β€’ Drag contribution in a channel flow with UB(/US) πŸ‘ πŸ‘ 𝑾 𝒙 : Blowing velocity 𝑫 π’ˆ = πŸπŸ‘ βˆ’π’— β€² π’˜ β€² 𝒆𝒛 βˆ’ πŸπŸ‘π‘Ύ 𝒙 ΰΆ± 𝟐 βˆ’ 𝒛 ΰ΄₯ + πŸπŸ‘ ΰΆ± 𝟐 βˆ’ 𝒛 𝒗𝒆𝒛 𝑺𝒇 𝒄 Blowing 𝟏 𝟏 Viscous Turbulent Convective (=UB/US) side Contribution contribution contribution (= laminar drag, const. ) (Fukagata et al., Phys. Fluids , 2002) β€’ Excellent performance (about 45% by 𝑾 𝒙 = 𝟏. πŸ”%𝑽 ∞ ) β€’ Unknown over a rough wall White: vortex core, Colors: wall shear stress E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 18/15

  18. Governing equations (S. Kang & H. Choi, Phys. Fluids , 2000) Incompressible Continuity and Navier-Stokes in 𝝄 𝒋 coordinate π›œπ’— 𝒋 = βˆ’π‘» π›œπ„ 𝒋 𝝐 πŸ‘ 𝒗 𝒋 π›œ 𝒗 𝒋 𝒗 π’Œ π›œπ’— 𝒋 βˆ’ 𝝐𝒒 + 𝟐 βˆ’ 𝒆𝑸 𝝐𝒖 = βˆ’ 𝜺 π’‹πŸ + 𝑻 𝒋 π›œπ„ π’Œ π›œπ„ 𝒋 π’πŸ 𝒄 π›œπ„ π’Œ 𝝄 π’Œ πžπ„ 𝟐 where πœ– 2 𝑣 𝑗 πœ– 2 𝑣 𝑗 πœ– 𝑣 𝑗 𝑣 π‘˜ πœ– 𝜚 π‘˜ 𝜚 π‘˜ πœ–π‘£ 𝑗 π‘’π‘ž πœ€ π‘—π‘˜ + 1 2 + 1 πœ–π‘£ 𝑗 𝑇 𝑗 = βˆ’πœ’ 𝑒 βˆ’ 𝜚 π‘˜ βˆ’ 𝜚 π‘˜ 𝑆𝑓 2𝜚 π‘˜ + 𝜚 π‘˜ 𝜚 π‘˜ πœ–πœŠ 2 πœ–πœŠ 2 π‘’πœŠ 2 πœ–πœŠ π‘˜ 𝜊 2 2 πœ–πœŠ 2 πœ–πœŠ 2 πœ–πœŠ 2 πœ–π‘£ 𝑗 1 πœ–πœƒ + πœ–πœƒ 0 𝑇 = 𝜚 π‘˜ βˆ’ 1 + πœƒ 𝜊 2 , for j = 1,3 𝜚 π‘˜ = πœ’ π‘˜ βˆ’ πœ€ π‘˜2 πœ–πœŠ 2 πœ–πœŠ 𝑗 πœ–πœŠ 𝑗 πœ’ π‘˜ = 1 1 + πœƒ , for j = 2 E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 19/15

  19. Discretization methods β€’ Energy-conservative second-order finite difference schemes (In space) β€’ Low-storage third-order Runge-Kutta / Crank- Nicolson scheme (In time) + SMAC method for pressure correction Discretized in the staggered grid system E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 20/15

  20. Validation & Verification (B. Milici et al., J. Fluid Mech. , 2014) Time trace of instantaneous C D,r Bulk mean streamwise velocity Less than 2% of difference with most resolved one E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 21/15

  21. How does friction drag decreases? *averaged in the spanwise and time Reynolds shear stress contour dashed lines: zero contour 𝑡 = 𝟏 𝑡 = 𝟏. πŸπŸπŸ” 𝑣 β€²+ 𝑀 β€²+ 𝒆 π’š 𝐧𝐛𝐲 E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 22/15

  22. π’˜ distribution (2D contour) ΰ΄₯ Based on 𝑣 𝜐 in w/o control case UB 0.5% case No control case E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 23/15

  23. 𝒗 distribution (2D contour) ΰ΄₯ Based on 𝑣 𝜐 in w/o control case UB 0.5% case No control case E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 24/15

  24. Stream function (detailed) E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 25/15

  25. 𝒗 𝐬𝐧𝐭 distribution Black: w/o control Green: UB 0.1% Red: UB 0.5% Normalized by 𝑣 𝜐 in w/o control case E.Mori, Fukagata lab. DNS/Drag Reduction/Uniform blowing(UB)/Rough wall 26/15

Recommend


More recommend