design and development of a marine current energy
play

DESIGN AND DEVELOPMENT OF A MARINE CURRENT ENERGY CONVERSION SYSTEM - PowerPoint PPT Presentation

DESIGN AND DEVELOPMENT OF A MARINE CURRENT ENERGY CONVERSION SYSTEM USING HYBRID VERTICAL AXIS TURBINE MD. JAHANGIR ALAM MASTER OF ENGINEERING FACULTY OF ENGINEERING AND APPLIED SCIENCE MEMORIAL UNIVERSITY OF NEWFOUNDLAND (MUN)


  1. “ DESIGN AND DEVELOPMENT OF A MARINE CURRENT ENERGY CONVERSION SYSTEM USING HYBRID VERTICAL AXIS TURBINE ” MD. JAHANGIR ALAM MASTER OF ENGINEERING FACULTY OF ENGINEERING AND APPLIED SCIENCE MEMORIAL UNIVERSITY OF NEWFOUNDLAND (MUN) ST.JOHN’S, NL, A1B3X5, CANADA.

  2. Agenda ������ � Ocean Currents � Marine Current Energy Conversion System � Thesis Objective � Prototype Design � Flume Tank Test and Test Results � Experimental Energy Conversion System � Conclusions 1

  3. Ocean/Marine Currents �������������� Horizontal movement of the Ocean water known as Ocean currents. Mainly three types- I. Tidal Currents II. Wind driven Currents III. Gradient (Density) Currents Estimated total power = 5,000 GW Power density may be up to 15kW/m 2 Fig: Labrador Current 2

  4. Tidal Currents �������������� � Vertical rise and fall of the water known as Tides � Due to the gravitational attraction of the moon and sun � Tidal Cycle of 12.5 Hours Fig: Tides ( due to Gravitational Attraction ) 3

  5. Gulf Stream +THC or Great Conveyor Belt �������������� 4

  6. North Atlantic current (Near St. John’s) �������������� Water Depth (m) Average Water Flow (m/s) 20 0.146 45 0.132 80 0.112 Near Bottom 0.07 Table: Ocean Current Speeds (for different depths) at different areas of St. John’s, NL 5

  7. Marine Current Energy Conversion System ����� Power Electronic Converter Generator Turbine Gearbox Battery Mechanical Conversion Electrical Conversion Figure: Marine Current Energy Conversion System (MCECS) 6

  8. Thesis Objective (As a part of ONSFI Project) � Design and Development of a low cut-in speed turbine for SEAformatics pods. � System testing in a deep sea condition. � Design and Development of Signal Condition circuits for the generated power. � Maximum Power Point Tracker development for the designed conversion system. 7

  9. Ocean Current Turbines �������� Types of Turbine: (According to OREG) Fig. II: Horizontal Axis Fig. I: Vertical Axis I. Vertical Axis Turbines II. Horizontal Axis Turbines III. Reciprocating Hydrofoils Fig. III: Reciprocating Hydrofoils 8

  10. Commercial Application �������� Fig: Vertical axis (Blue Energy) Fig: Reciprocating Hydrofoil (Engineering Business Ltd.) ** High cut-in speed ** Turbine Rotation Fig: Horizontal axis (MCT Ltd.) 9

  11. Vertical Axis Turbines �������� Vertical-axis turbines are a type of turbine where the main rotor shaft runs vertically. Types: 1. Savonius Type (Drag Type) (1) Savonius type 2. Darrieus Type (Lift Type) I. Egg Beater Type II. H-Type Gorlov, Squirrel cage etc. i. Egg Beater Type i. H-Type [ Turbine rotation is irrespective to the direction of fluid flow] (2) Darrieus type 10

  12. Comparison �������� Savonius Type: Adv.: High Starting Torque Dis.: Low Tip Speed Ratio (TSR ≈<1), Low Efficiency Darrieus Type: Adv.: High TSR (>1), High Efficiency Dis.: Low start-up characteristics TSR ( λ ) = (Blade Tip Speed/ Water Speed)= ( ω R/V) 11

  13. Advantages of a Hybrid Turbine Design �������� � Flexibility to meet specific design criteria � Knowledge of conventional rotors � Simple in structure � Easy to build 12

  14. Prototype Design

  15. Possible Combinations ���������������� Fig: Type A Fig: Type B 14

  16. Selected Prototype ���������������� Fig: Hybrid Model (CAD View) Fig: Hybrid Model (Final product) Solidity Ratio: ((No. of Blades * Chord Length)/Rotor dia.) 15

  17. Design Equations & Parameters ���������������� Savonius Rotor Rotor Height (H s ) 400mm Mechanical Power Output Nominal diameter of the of Hybrid Turbine, paddles (d i ) 130mm Diameter of the shaft (a) 20mm Rotor diameter (D s ) 200mm ( ) ρ 3 = × × × + P 0.5 V A C ( A - A )C Overlap ratio ( β ) 0.298 s Ps d s P d 0.08m 2 Swept area (A s ) (I) Darrieus Rotor Tip Speed Ratio (TSR), Airfoil Section NACA 0015 Number of Blades 4 ωR d Solidity Ratio [3] 0.40 λ = (II) V Rotor diameter (D d ) 1m Rotor Height (H d ) 1m 1m 2 Swept area (A d ) Chord length (C) 100mm Solidity Ratio: ((No. of Blades * Chord Length)/Rotor dia.) 16

  18. Working Principle (Hydrodynamics) ���������������� V= Water Speed ωR d Y V R V α 2 90 0 = + λ θ + λ V V 1 2 cos R   θ sin   − 1 α = tan   θ + λ cos 180 0 ө 0 0 X Counter clock 270 0 α 17

  19. Flume Tank ��������������� 8m wide x 4m deep x 22.25m long Fig: Flume Tank (MI) Fig: Turbine With Frame 18

  20. Test Setup ��������������� Magnetic Particle Load Cell Brake Gear-tooth Submerged Turbine Gear-tooth Torque Arm Sensor Fig: Torque and Speed Measurement Fig: Submerged Turbine Fig: DAQ board and Data Collection Terminal 19

  21. Test results

  22. Savonius Test Results ������������ 2.2 2 1.8 Power output, P (W) 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Water Speed,V (m/s) Fig: Two-Stage Savonius Fig: Power (P) vs. Water Speed (V) 21

  23. H-Darrieus Test Results ������������ 14 12 Power output, P (Watt) 10 8 6 4 2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Water Speed,V (m/s) Fig: Power (P) vs. Water Speed (V) 22

  24. H-Darrieus Test Results ������������ 0.14 V ( m / s ) 0.13 0.3 0.12 0.4 0.11 0.5 Power Coefficient (Cp) 0.1 0.6 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 TSR Fig: Power Coefficient vs. TSR (λ) for H-Darrieus Maximum Cp = 0.1248 @ 0.6m/s, when, TSR = 2.67 Maximum TSR = 3.09 @0.4m/s, when Cp = 0.012 23

  25. Hybrid Test Results (P vs. V) ������������ 22 20 Hybrid Savonius 18 Darrieus 16 Power output, P (Watt) 14 12 10 8 6 4 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 VIDEO Water Speed,V (m/s) Fig: Power (P) vs. Water Speed (V) for Hybrid Turbine 24

  26. Hybrid Test Results (P vs. ω ) ������������ 22 V ( m / s) 20 0.3 18 0.4 16 0.5 0.6 14 Power (Watt) 0.7 12 0.8 10 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 Turbine Speed (rad/s) Fig: Power vs. Turbine Speed ( ω ) for Hybrid Turbine 25

  27. Hybrid Test Results (C P vs. λ ) ������������ 0.16 V ( m / s ) 0.14 0.3 0.4 0.12 0.5 Power Coefficient (Cp) 0.6 0.7 0.1 0.8 0.08 0.06 0.04 0.02 0 2.5 2.6 2.7 2.8 2.9 3 3.1 TSR Fig: Power Coefficient vs. TSR (λ) for Hybrid Turbine Maximum Cp = 0.1484 @ 0.6m/s, when, TSR = 2.6794 Maximum TSR = 3.1114 @0.5m/s, when Cp = 0.0539 26

  28. Experimental Energy Conversion System

  29. Experimental Energy Conversion System ���������������� ������������� DC/DC Hybrid PM Battery Battery Converter Turbine Generator Charger Rectifier Current and Voltage Sensing PWM Control Signal Dummy Load Microcontroller Power and Voltage Calculation & PWM Duty Cycle Calculation RS232 Communication LCD Display User Interface Fig: Experimental Energy Conversion System (MPPT based) 28

  30. Maximum Power Point Tracker (MPPT) ���������������� ������������� P MPP Switch Mode P IN P OUT Source Load Power Supply 4 2 0 0 1 3 MPPT Algorithm v MPPT Control Fig. MPPT Actions (Graphical View of P & O) Fig. Basic MPPT control blocks Case dP dv Action 0 → 1 <0 <0 + 2 → 0 <0 >0 - 3 → 0 >0 <0 - 0 → 4 >0 >0 + Fig. MPPT Actions 29

  31. MPPT Algorithm (Perturbation & Observation) ���������������� ������������� Fig: MPPT Flow Chart 30

  32. Detailed Circuit Diagram ���������������� ������������� 31

  33. Main features ���������������� ������������� � Low cost microcontroller based � Less complexity � Easily extendable � Minimize the size due to less components 32

  34. Laboratory Setup ���������������� ������������� DC Supply Current Sensor Boost Converter LOAD Dummy Load Microcontroller with RS232 and LCD Display Battery 12 V 33

  35. Test Result (Boost Converter) ���������������� ������������� 222 µH MUR815 Diode 30 27 Theoretical Experimental 24 Output Voltage, Vout (V) IRL 520 1300 µF 21 MOSFET (Logic level) 18 Fig: Boost Converter 15 12 9 6 3 0 0 1 2 3 4 5 6 7 8 9 10 Input Voltage, Vin (V) Fig: V out vs. V in 34

  36. Test Result (MPPT) ���������������� ������������� PWM Signal V out Fig: Oscilloscope shots of PWM Signal and V out V V out = in I out = I 1 - D ( ) & in (1 - D) 35 ** 5 Volt/Div

  37. Conclusions

Recommend


More recommend