d schwal
play

D. . Schwal walm 1, 1,4 , , D. Zajfm fman 1 , , Y. Mishnayot ot - PowerPoint PPT Presentation

M. Hass 1 , O. Heber 1 1 , D . Melnik 1 , , M. Rappa papor port 1 , , S. Vaintrau raub 1,3 1,3 , , D. . Schwal walm 1, 1,4 , , D. Zajfm fman 1 , , Y. Mishnayot ot 1, 3 , G. Ron 2 , T. Segal 2 , T. Hi Hirsh 3 , , 1,3 K. Blaum 4 4 1 Weizm


  1. M. Hass 1 , O. Heber 1 1 , D . Melnik 1 , , M. Rappa papor port 1 , , S. Vaintrau raub 1,3 1,3 , , D. . Schwal walm 1, 1,4 , , D. Zajfm fman 1 , , Y. Mishnayot ot 1, 3 , G. Ron 2 , T. Segal 2 , T. Hi Hirsh 3 , , 1,3 K. Blaum 4 4 1 Weizm izmann ann Institu itute te of Scie ience, e, Israel el, , 2 Hebrew rew Univers rsity ity of Jerusal alem, em, Israel el, 3 Sore req q Nuclear ar Research arch Center, r, Israel l , 4 Max ax-Pl Plan anck Institut itut für Kernphy physik ik, , Heidelberg berg, , Germany any Collaboration between the Nuclear Structure and the molecular and Atomic Physics groups. Also scientists from the Hebrew University, Soreq NRC center, MPIK – Heidelberg and LBL Ph.D. Thesis of Sergey Vaintraub Tsviki Hirsh Ph.D. Student : Yonatan Mishnayot (HUJI/WI) Michael Hass IFMIF/ELAMAT 2016

  2. BUT… Also “Physics Beyond the Standard Model” Michael Hass IFMIF/ELAMAT 2016

  3. 6 Li e - Electron daughter nucleus Pure Gamow-Teller   q p     q e dW a cos     E e   1 p     q 6 e dW ( He ) cos   SM   3 E e n e Electron anti-neutrino      6 6 He Li e e  New physics beyond the Standard Model’s V-A structure “LHC - type” physics at the low energy frontier! Michael Hass IFMIF/ELAMAT 2016

  4. Michael Hass IFMIF/ELAMAT 2016

  5. B A D Y S W O W I E T E C A TU D I E S R L D D E (P ARTIAL L IST ) Isotope T echnique Group WI (Hass) + HUJI (Ron) + LBL 6 He Electrostatic (Kolomensky) T rap ANL (Mueller) + UW 6 He MOT (Garcia) ANL (Savard) 8 Li Paul T rap TRIUMF (Behr) MOT 38m K / 87 Rb HUJI (Ron) MOT 17 - - 23 Ne Leuven / WITCH Penning T rap 26m Al / 35 Ar / 46 V (Severijns) LPC CAEN (F lé ch ard) 6 He / 35 Ar Paul T rap Many neutron Many LBL (Freedman - MOT 21 Na deceased) WI (Hass) Electrostatic 16 N T rap KVI (Jungmann) MOT 21 Na Michael Hass IFMIF/ELAMAT 2016

  6. Entrance mirror Field free region L=407 mm Exit mirror Michael Hass IFMIF/ELAMAT 2016

  7. 6 He + Fig. 2 A schematic view of the EST for b - decay studies. The radioactive ion, like 6 He, moves with E k -4.2 keV between the reflecting electrodes. The b electrons are detected in position sensitive counters while the recoiling ions, due to kinematic focusing, are detected with very high efficiency in either one (determined by the instantaneous direction) of the annular MCP counters. Apparent advantages: • “Natural” additional kinetic energy of recoils. Kinematics focusing. • Large solid angles (for BOTH ion recoil and electrons • Field- free and “equipment - free” inner region • Simplicity, portability • Complementary to other method (different systematic errors) • Full reconstruction of event-by-event - actually measure cos( q )! Michael Hass IFMIF/ELAMAT 2016

  8. 30 o magnet deflectors Chopper slits EBIT Quadrupole FC Trap FC FC chamber FC NG Furnace NG 1 m A) High energy (14 MeV) neutrons from a d+t NG hit a hot BeO target; 6 He nuclei are produced. B) 6 He atoms are transferred to an EBIT where they get ionized, accumulated, and bunched and guided C) The ion bunch is injected into the EIBT for beta-decay studies. D) Data acquisition: signals from detectors are processed, recorded, and analyzed . Michael Hass IFMIF/ELAMAT 2016

  9. Trapping and bunching of stable 4 He + and 4 He ++ . As expected, the trapping time of 4 He ++ is shorter than that of 4 He + . Bunching R&D with 4 He • • Algorithm and tests of a position-sensitive e-detector R&D into specialized design of Electron Beam • Ion source Michael Hass IFMIF/ELAMAT 2016

  10. Michael Hass IFMIF/ELAMAT 2016

  11. Michael Hass IFMIF/ELAMAT 2016

  12. Or, • from a d+t, 14 MeV n generator • from d beam - VDG Expected Yields for a BeO target: 9 Be(n, a ) 6 He SARAF (40 MeV, 2 mA): 8∙10 12 /sec SPIRAL2 (40 MeV, 5 mA): 2∙10 13 /sec Expected Yields for a BN target: 11 B(n, a ) 8 Li SARAF (40 MeV, 2 mA): 2∙ 10 12 /sec ALSO: 16 O(n.p) 16 N, 23 Na(n,p) 23 Ne. ALSO: Direct production Hass et al., J. Phys. G: Nucl. Part. Phys., 35, 014042 (2008) Michael Hass IFMIF/ELAMAT 2016

  13. 6 He production at ISOLDE (CERN) BeO B 4 C 1.4 GeV p ISOLDE Exp. Similar possibilities 17.4.2009 With 11 B(n, a ) 8 Li Michael Hass IFMIF/ELAMAT 2016

  14. SARAF Phase I @ Soreq Center - Israel  Commissioning of Phase-I is approaching finalization PSM  1 mA CW proton beam has been accelerated up to an energy of 3.7 MeV Target  Low duty cycle (~0.2 mA ) beam deuteron beam has been line accelerated up to an energy Beam of 4.3 MeV Dump  New Target Room!!! (2016)  Phase-II – up to 40 MeV (2020) - SACLAY Michael Hass IFMIF/ELAMAT 2016

  15. The Li Liquid Target (LiLiT@SAEAF Michael Paul et al. Hebrew Unive. Jerusalem Michael Hass IFMIF/ELAMAT 2016

  16. Michael Hass IFMIF/ELAMAT 2016

  17. Yields of several light radioactive isotopes for SARAF-I and SARAF-II Michael Hass IFMIF/ELAMAT 2016

  18. Many thanks to all my colleagues Michael Hass IFMIF/ELAMAT 2016

  19. Optical resonator Particle resonator E k , q V V V>E k /q M Trapping of fast ion beams using electrostatic field L Michael Hass IFMIF/ELAMAT 2016

  20. Electrons detector e - n - Entrance mirror Exit mirror MCP MCP 6 Li ++ Some of the 6 Li ions will miss the MCP at its periphery 18 April 2016 Michael Hass IFMIF/ELAMAT 2016

  21. Use infrastructure (Shielding, radiation protection, equipment) from de-commissioned 14 MV Koffler accelerator Michael Hass IFMIF/ELAMAT 2016

  22. Thick plastic scintillator Individual photomultipliers Michael Hass IFMIF/ELAMAT 2016

  23.  Dividing area of Detector to squares  Distribution of Photons in PMTs per square  Statistical Map Michael Hass IFMIF/ELAMAT 2016

  24. Michael Hass IFMIF/ELAMAT 2016

  25. The “Standard Model” of Particle Physics Michael Hass IFMIF/ELAMAT 2016

Recommend


More recommend