CYGNUS Update Directional WIMP Detector • Vision reminder • Sensitivity and cost studies • Some R&D Neil Spooner (for CYGNUS), University of Sheffield Special thanks to Sven Vahsen, Ciaran O’Hare and many others for contributions to the slides
CYGNUS Vision A multi-site Galactic Nuclear Recoil Observatory Probe Dark Matter below the Neutrino Floor Measure 8 B solar neutrinos with directionality Extend searches to low mass with electron and nuclear recoils
CYGNUS Science • Search for low WIMP mass -Nuclear recoils AND -Electron recoils • Observe galactic dipole, directionality • Detecting solar neutrinos • Coherent neutrino-nucleus scattering exposure • Penetrate the neutrino floor this is an old plot! • Measure DM particle properties and physics • Measure Geoneutrinos • WIMP Astronomy
CYGNUS Collaboration • Most groups working on directional dark matter detection have formed CYGNUS • Members from the Australia, China, Italy, Japan, Spain, UK, US etc (25 institutes) • Includes activity in Emulsions and TPC gas technology (focus in this talk on TPCs) 2007 Boulby, UK 2009 MIT, US • CYGNUS evolved 2011 Modane, France 2013 Toyama, Japan from a series of 2015 Los Angeles, USA directional 2017 JinPing, China workshops 2018 l’Aquila, Italy 2019 Rome, Italy Steering group: June 2018 l’Aquila, Italy • Neil Spooner (Sheffield, UK) • Sven Vahsen (Hawaii, USA) • Kentaro Miuchi (Kobe, Japan) • Elisabetta Baracchini ( GSSI/INFN , Italy) • Greg Lane (ANU, Australia)
CYGNUS Collaboration • Most groups working on directional dark matter detection have formed CYGNUS • Members from the Australia, China, Italy, Japan, Spain, UK, US etc (25 institutes) • Includes activity in Emulsions and TPC gas technology (focus in this talk on TPCs) 2007 Boulby, UK 2009 MIT, US • CYGNUS evolved 2011 Modane, France 2013 Toyama, Japan from a series of 2015 Los Angeles, USA directional 2017 JinPing, China workshops 2018 l’Aquila, Italy 2019 Rome, Italy TPC working groups June 2018 l’Aquila, Italy Engineering (T. Baroncelli, Melbourne, Australia) Simulations (S. Vahsen, Hawaii, USA) Neutrons (E. Baracchini, Frascati, Italy) Gas R&D (K. Miuchi, Kobe, Japan) Calibrations (E. Baracchini, Frascati, Italy) Steering (N. Spooner, Sheffield, UK)
CYGNUS: Gas TPC Concept • Gas Mixtures: SF 6 :He, p ~1atm, CF 4 :SF 6 :He etc • Can switch between higher density (search mode) and lower density gas for (improved) directional confirmation of WIMP signal • Threshold at <1 keV e • Use of high gain stages • Ultimate is W~30 eV • Active electron rejection at ~GeV • Reduced diffusion via -ve ion drift • 3D Fiducialisation • SF 6 minority carriers • charge cloud profile • He target • Improved sensitivity to low mass WIMP • Longer recoil tracks, extending directionality to lower energies • Reasonable detector volumes (10 m 3 to 1000 m 3 )
New CYGNUS Funding
New CYGNUS Funding JAPAN CYGNUS-KM 1m 3 funded
New CYGNUS Funding JAPAN CYGNUS-KM 1m 3 funded AUSTRALIA new $5M Stawell site pending ARC $9M
New CYGNUS Funding JAPAN CYGNUS-KM 1m 3 funded AUSTRALIA new $5M Stawell site pending ARC $9M ITALY new € 2M ERC new € 0.2M INFN
Australia Stawell site, CYGNUS Scale of DRIFT-II (with all shielding) CYGNUS 10 (~10 m 3 ) ? • Funded, at ~1.6 km depth • First in southern hemisphere
Italy - CYGNO
Italy - CYGNO
CYGNUS-KM and Kobe-Sheffield • Collaboration between Kobe and Sheffield funded for travel by JSPS and the UK Royal Society • Aims to apply Kobe electronics to new charge readout techniques for directional dark matter detection ThGEM prototype (Sheffield group) PhD Students: Warren Lynch, Callum Eldridge, Rob Gregorio
Penetrating the Neutrino Floor • Directionality significantly enhances the DM sensitivity below neutrino floor • 3D again “best” • But note: • True Figure of Merit: sensitivity / unit cost • A realistic detector has strongly energy-dependent Ciaran A. J. O'Hare directionality. This was not considered in past studies. Readout strategies for directional dark matter detection beyond the neutrino background Ciaran A. J. O'Hare, Anne M. Green, Julien Billard, Enectali Figueroa-Feliciano, Louis E. Strigari
Challenge is to find Optimum Readout Approach Sensitivity per Unit Cost • Many types of readout possible - parallel routes need: • Simulations work by Hawaii (shown here), Sheffield, Kobe, SRIM (modified), Degrad, GEANT4… • R&D on readout by all groups simulated examples of a 20 keV electron track after 25 cm of drift
Paper… “Feasibility of a Nuclear Recoil Observatory with Directional Sensitivity to WIMPs and Solar Neutrinos” Cost benefit comparison of readout Feasibility of a Nuclear Recoil Observatory with Directional Sensitivity to WIMPs and Solar Neutrinos technology, 1D, 2D, 3D, strip, pixel etc… B. Simpson 1 Abstract • Can we do electron - nuclear recoil Now that conventional WIMP dark matter searches are approaching the neutrino floor, there has been a resurgence of interest in the possibility of introducing recoil direction sensitivity into the field. Such directional sensitivity would o ff er the powerful prospect of reaching below this floor, introducing both the possibility of identifying a clear signature discrimination in the low WIMP for dark matter particles in the galaxy below this level but also of exploiting observation of coherent neutrino scattering from the Sun and other sources with directional sensitivity. We survey the experimental status of all technologies proposed to date, and perform a cost-benefit analysis to identify the optimal choice in di ff erent WIMP and neutrino mass region (<10 GeV)? scenarios. Based on our findings, we propose a large-scale directional nuclear recoil observatory with directional WIMP sensitivity below the neutrino floor and capability to explore Solar neutrino coherent scattering with direction sensitivity Keywords: keyword1, keyword2 • What is the discrimination power in Contents this region? 1 Introduction 3 2 Science Case for a large Nuclear Recoil Observatory 3 2.1 WIMP Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 • What are the intrinsic 2.1.1 WIMP scattering review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Galactic signal detection below the neutrino floor . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 WIMP astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 backgrounds? 2.1.4 Particle models and directionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Solar Neutrino Coherent Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Solar neutrino scattering review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Advantages of directional detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 • What is the possible directional 2.2.3 Science with source and detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Other Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 Non-solar neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.2 Axions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 sensitivity in this region? 2.3.3 Exotic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Existing Directional Detection Technologies 7 3.1 Detectors that reconstruct the recoil track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 • What is the cost vs sensitivity 3.1.1 Gas-based TPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 Nuclear Emulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.3 DNA strand detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 trade-off? 3.1.4 Planar targets (graphene) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Detectors that indirectly determine the recoil direction . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Anisotropic scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.2 Columnar recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ‹#› Preprint submitted to Physics Reports May 31, 2017
Recommend
More recommend