cubical type theory
play

Cubical Type Theory Dan Licata Wesleyan University Guillaume - PowerPoint PPT Presentation

Cubical Type Theory Dan Licata Wesleyan University Guillaume Brunerie Universit de Nice Sophia Antipolis Synthetic geometry Euclids postulates 1. To draw a straight line from any point to any point. 2. To produce a finite straight line


  1. Respect Equivalence p 0 : α a 0 = B b 0 α : A ≃ B p 0 : a 0 = A α -1 b 0 p 0 : a 0 = α b 0 p 1 : a 1 = α b 1 p 0 = α p 1 : a 0 = A a 1 ≃ b 0 = B b 1 α p α a 0 α a 1 p : a 0 = A a 1 � p 0 p 1 α p : α a 0 = B α a 1 b 0 b 1 ! p 0 ; α p ; p 1 B 21

  2. Missing Sides 22

  3. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) 23

  4. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) 23

  5. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t x z A l r y w 23

  6. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t x z A l r y w b 23

  7. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t t’ x z x’ z’ A A’ r’ l r l’ y w y’ w’ b 23

  8. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t t’ x z x’ z’ A A’ r’ l r l’ y w y’ w’ b b’ 23

  9. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t t’ (b,b’) x z x’ z’ A A’ r’ l r l’ y w y’ w’ b b’ 23

  10. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g 24

  11. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t f h A $ A’ l r g k 24

  12. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t t x f h f x h x A $ A’ A’ l r l x r x g k g x k x 24

  13. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t t x f h f x h x A $ A’ A’ l r l x r x g k g x k x b[x] 24

  14. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t t x f h f x h x A $ A’ A’ l r l x r x g k g x k x b[x] λ x.b 24

  15. t p u l a0 = A a1 r q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  16. refl a0 a0 t p u p l q a1 a1 l a0 = A a1 r refl q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  17. refl a0 a0 p t u a1 a1 refl refl a0 a0 t p u p l q a1 a1 l a0 = A a1 r refl q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  18. refl a0 a0 p t u a1 a1 refl refl refl a0 a0 a0 a0 t p u u r p l q v a1 a1 a1 a1 l a0 = A a1 r refl refl q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  19. a0 t p u l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  20. a0 t p u l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  21. a0 t p u l p q l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  22. a0 t p u l t p q l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  23. a0 t r p u l t p u q l a0 = A a1 r v q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  24. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  25. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  26. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v a1 q v a1 a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  27. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v a1 q v a1 a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  28. a0 a0 a0 t a0 a0 r p u l t b p u q l a0 = A a1 r v a1 q v a1 a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  29. a0 a0 a0 t a0 a0 r p u l t b p u q l a0 = A a1 r v a1 q v a1 b a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  30. Kan condition: any n-dimensional open box has a lid, and an inside 27

  31. Cubes 28

  32. Line l l0 l1 29

  33. Square x y s00 s10 s s01 s11 30

  34. Square x y s-0 s00 s10 s s0- s1- s01 s11 s-1 30

  35. Square with its boundary s x y 31

  36. Square with its boundary s s<0/x> x y 31

  37. Square with its boundary s s<0/x> s<1/x> x y 31

  38. Square with its boundary s<0/y> s s<0/x> s<1/x> x y 31

  39. Square with its boundary s<0/y> s s<0/x> s<1/x> s<1/y> x y 31

  40. Square with its boundary s<0/y> s<0/x><0/y> s s<0/x> s<1/x> s<1/y> x y 31

  41. Square with its boundary s<0/y> s<0/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/y> x y 31

  42. Square with its boundary s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/y> x y 31

  43. Square with its boundary s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y 31

  44. Square with its boundary s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y 31

  45. Square with its boundary s<0/y><1/x> s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y 31

  46. Square with its boundary s<0/y><1/x> ≡ s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y substitutions for independent variables commute 31

Recommend


More recommend