cs325 artificial intelligence ch 7 8 9 logic knowledge
play

CS325 Artificial Intelligence Ch. 7, 8, 9 Logic, Knowledge, and - PowerPoint PPT Presentation

CS325 Artificial Intelligence Ch. 7, 8, 9 Logic, Knowledge, and Inference Cengiz Gnay, Ph.D. Spring 2013 Gnay Ch. 7, 8, 9 Logic, Knowledge, and Inference Is Logic Overrated? We did so far: Intelligent agents Problem Solving


  1. CS325 Artificial Intelligence Ch. 7, 8, 9 – Logic, Knowledge, and Inference Cengiz Günay, Ph.D. Spring 2013 Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  2. Is Logic Overrated? We did so far: Intelligent agents Problem Solving Probability Machine Learning Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  3. Is Logic Overrated? We did so far: Intelligent agents Problem Solving Probability Machine Learning Did we forget “thinking rationally?” Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  4. Is Logic Overrated? We did so far: Intelligent agents Problem Solving Probability Machine Learning Did we forget “thinking rationally?” An agent needs logic for: Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  5. Is Logic Overrated? We did so far: Intelligent agents Problem Solving Probability Machine Learning Did we forget “thinking rationally?” An agent needs logic for: To represent a model of the world And to reason about it Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  6. Entry/Exit Surveys Exit survey: Unsupervised Learning What changed in your understanding? Any new suggestions on where would you use it? Entry survey: Logic (0.25 points of final grade) What language would you use to represent logic? How would you make an agent reason? Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  7. Tools of Logic It’s been a while since Aristotle, do we still need formal logic? Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  8. Tools of Logic It’s been a while since Aristotle, do we still need formal logic? Our society is based on logic: we take it for granted. Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  9. Tools of Logic It’s been a while since Aristotle, do we still need formal logic? Our society is based on logic: we take it for granted. In this class, we’ll learn the tools of logic for representation and inference : Propositional logic First-order logic Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  10. The Simplest: Propositional Logic Remember? P(B) P(E) Burglary Earthquake .002 .001 B E P(A|B,E) T T .95 Alarm T F .94 F T .29 F F .001 A P(J|A) A P(M|A) JohnCalls T .90 MaryCalls T .70 F .05 .01 F Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  11. The Simplest: Propositional Logic Remember? P(B) P(E) Burglary Earthquake .002 .001 B E P(A|B,E) T T .95 Alarm T F .94 F T .29 F F .001 A P(J|A) A P(M|A) JohnCalls T .90 MaryCalls T .70 F .05 .01 F ( E ∨ B ) ⇒ A , Correct? Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  12. The Simplest: Propositional Logic Remember? P(B) P(E) Burglary Earthquake .002 .001 B E P(A|B,E) T T .95 Alarm T F .94 F T .29 F F .001 A P(J|A) A P(M|A) JohnCalls T .90 MaryCalls T .70 F .05 .01 F ( E ∨ B ) ⇒ A , Correct? A ⇒ ( J ∧ M ) ? Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  13. The Simplest: Propositional Logic ( E ∨ B ) ⇒ A , Correct? A ⇒ ( J ∧ M ) ? Propositional Logic Operators Cheat Sheet ∧ And ∨ Or ¬ Negation () Grouping ⇒ Implies ⇔ Equivalence Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  14. The Simplest: Propositional Logic ( E ∨ B ) ⇒ A , Correct? A ⇒ ( J ∧ M ) ? Propositional Logic Operators Cheat Sheet ∧ And ∨ Or ¬ Negation () Grouping ⇒ Implies ⇔ Equivalence Model of the world represented as: { B : True , E : False , . . . } Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  15. Can You Handle the Truth Tables? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  16. Can You Handle the Truth Tables? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Mostly consistent with English meanings, except? Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  17. Can You Handle the Truth Tables? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Mostly consistent with English meanings, except? OR operation ( ∨ ) is inclusive Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  18. Can You Handle the Truth Tables? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Mostly consistent with English meanings, except? OR operation ( ∨ ) is inclusive Except ⇒ and ⇔ , so consult the truth table. Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  19. Can You Handle the Truth Tables? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Mostly consistent with English meanings, except? OR operation ( ∨ ) is inclusive Except ⇒ and ⇔ , so consult the truth table. Question: E : 5 is even, S : the earth goes around the sun E ⇒ S : True or False? Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  20. Can You Handle the Truth Tables? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Mostly consistent with English meanings, except? OR operation ( ∨ ) is inclusive Except ⇒ and ⇔ , so consult the truth table. Question: E : 5 is even, S : the earth goes around the sun E ⇒ S : True or False? ¬ E ⇒ ¬ S : True or False? Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  21. Let’s Put Truth Tables to Use P Q P ∧ ( P ⇒ Q ) ¬ ( ¬ P ∨ ¬ Q ) P ∧ ( P ⇒ Q ) ⇔ ¬ ( ¬ P ∨ ¬ Q ) False False False True True False True True Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  22. Let’s Put Truth Tables to Use P Q P ∧ ( P ⇒ Q ) ¬ ( ¬ P ∨ ¬ Q ) P ∧ ( P ⇒ Q ) ⇔ ¬ ( ¬ P ∨ ¬ Q ) False False Yes False True Yes True False Yes True True Yes Yes Yes Trick: ¬ ( ¬ P ∨ ¬ Q ) ⇒ P ∧ Q Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  23. World Representation What we know to be True: ( E ∨ B ) ⇒ A A ⇒ ( J ∧ M ) B Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  24. World Representation Can we infer? T F ? What we know to be True: E ( E ∨ B ) ⇒ A B A ⇒ ( J ∧ M ) A B J M Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  25. World Representation Can we infer? T F ? What we know to be True: X E ( E ∨ B ) ⇒ A X B A ⇒ ( J ∧ M ) X A B X J X M Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  26. Validity and Satisfiability Valid: Always true. Satisfiable: Possible to be true. Unsatisfiable: Impossible to be true. Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  27. Validity and Satisfiability Valid: Always true. Satisfiable: Possible to be true. Unsatisfiable: Impossible to be true. V S U P P ∨ ¬ P P ∧ ¬ P P ∨ Q ∨ ( P ⇔ Q ) ( Q ⇒ P ) ∨ ( P ⇒ Q ) ( Food ⇒ Party ) ∨ ( Drinks ⇒ Party ) ⇒ ( Food ∧ Drinks ⇒ Party ) Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  28. Validity and Satisfiability Valid: Always true. Satisfiable: Possible to be true. Unsatisfiable: Impossible to be true. V S U X P X P ∨ ¬ P X P ∧ ¬ P X P ∨ Q ∨ ( P ⇔ Q ) X ( Q ⇒ P ) ∨ ( P ⇒ Q ) X ( Food ⇒ Party ) ∨ ( Drinks ⇒ Party ) ⇒ ( Food ∧ Drinks ⇒ Party ) Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  29. Propositional Logic: Limitations? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true 1 Only true and false propositions, no objects. Therefore no relations between objects 2 No uncertainty (except totally unknown entities) 3 No general statements like ALL or ANY Cumbersome for large domains. Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  30. Propositional Logic: Limitations? P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true 1 Only true and false propositions, no objects. Therefore no relations between objects 2 No uncertainty (except totally unknown entities) 3 No general statements like ALL or ANY Cumbersome for large domains. Next: First Order Logic (FOL) , fixes 1 & 3 Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  31. First Order Logic Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

  32. First Order Logic Can also compare in terms of representation type: 1 Atomic: facts Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

Recommend


More recommend