\o7nJ eS-t y-(ut- crl 1 (v* r ! x 1?a.x) ): v a ? h ) -l (3x ?Qctl:_ V ,r De*a.*t .tt + T.r+ Y x ? C Y ) tF -D -3 I a F J x fcY) ?(r'l 2 * a - l tl.l
tA rv 2v*' Etrl Ciri c*!'a.h ':c(x)) ( € cr) Vx a Y r ( E & ) . e c r ) ) = 1r. (s&a e cx)) = g r ' r ( t E C i v c c r ) ) E I X ( E C * 1 A - t c ( ' ( ) ) t' fi a^, t2Vu' (t t'}'r' k -- ( z ) 3l-r
Lo7rc4 Ta.+tr-,.-+ ? -t- if '\ w.a,tt Pa, i' fnlt,.tt ffi 7 -1t- " ' 7 --t ... E rn Irl4|t 0^Q.sl)'e Tal*W i'!
TABLE I Rules oflnference. Name of Inference Rule Taulolog) --> q)l '-, q ponens Modus lp n @ P ' + q . q S)i '-> -P tollens l-q n Qt --> Modus ^@ --> '-+ r) Hypotherical l(p - S) r\l'-, Q) ryl P - - r q I q - - r / 51i!e7"ila q Disjunctive sylk l@vq1/\-pl'- P v q 't7 iiarl i2u1 Addidon p ' - > ( ? v q ) ' . q P v Simplification ^q)'+ p p ^ q \P ,. p --, (1, ^ q) Conjuncljon ^ @)j l(p) q r)l --> (q v r) Resolution ^ (-p Y l(p v q) P Y q - p v r '. v r s h t he h7 h.Il n (1nt )+e hp 'lc,'tt g<*eJ.tAy !-.El . t € Y4
rl*:':i+x* .fit ral .if rr )utrlll' fi.q ^7-+9 ert L t* cd,.t- +t*.^ U,fr*yl-t 3 ' t C ( h v r ) -?tt 1 l. a . a l g rt,p$c.;l.a I t, rt/ f -2 | q. a f slolal {r,tca; 17 ryr t -r74 J t, 1 ut.&, l4 .rrg hrf ?. 6 r t g. t htgpr-,a Cr? (2 d.A, hezrl- t.f
for Qualtified StatemeDts TABLE 2 Rules of Inference Name Rule oflnference gorralizatrbn Universbl 3rP(;r), Exislential inslanliatioil '. P(c) for some element c P(c) for some elemenl c '. lrP(r) 1.3
Recommend
More recommend