CP violation and Leptogenesis in Minimal Seesaw Model Sin Kyu Kang (Seoul-Tech) based on work in progress
Introduction âą Current situation of neutrino physics : - We have determined three neutrino mixing angles, đ 12 , đ 23 , đ 13 . - Recent measurements of not-so-small đ 13 open up new window to probe leptonic CPV. - No compelling evidence for LCPV yet, but there is a fit to neutrino data narrows down the allowed non-trivial values of Dirac-type CP phase đ đ·đ ~1.5đ
Introduction âą Current situation of neutrino physics : -Recent T2K results show -similar effects seen in NovA and a hint for non-trivial CP phase SuperK Averaged by Marrone (2016)
Neutrino Mixing Matrix Neutrino Mixing parametrized by U PMNS ï» ïŠ ï ï€ ï¶ ï± ï± ï± ï± ïŠ ï¶ ïŠ ï¶ i 1 0 0 cos 0 sin e cos sin 0 13 13 12 12 ï§ ï· ï§ ï· ï§ ï· ïœ ï± ï± ï ï± ï± ïŽ U 0 cos sin ï§ 0 1 0 ï· sin cos 0 P ï§ ï· ï§ ï· MNS 23 23 12 12 ï§ ï· ï§ ï· ï§ ï· ï€ ï ï± ï± ï ï± ï± i ïš ïž ïš ïž 0 sin cos sin e 0 cos 0 0 1 ïš ïž 23 23 13 13 Dirac Phase : CP violation Majorana Phase : measurable in neutrino oscillations Neutrinoless double beta decay ï€ ïœ ïź ïź ïź ï ïź ïź ïź 4 ( ) J P ( ) P ( ) ïĄ ïą ïĄ ïą all measured
Leptonic CP violation Fundamental missing link that needs to be addressed in neutrino âą experiments is to measure đ đž , đ đđđ and to explore LCPV. If non-trivial đ đž , đ đđđ are measured, what do they imply ? âą It is well known that the CPV in quark sector is not enough to explain âą the measured matter-antimatter asymmetry in our Universe. Is the CPV in lepton sector responsible for the matter-antimatter asy. ? âą Are the CPV phases in Îœ mixing matrix directly responsible âą for baryogenesis via leptogenesis ?
Leptonic CP violation Baryogenesis via leptogenesis can be realized in seesaw models. âą It is likely that the CPV phases in Îœ mixing matrix are not directly âą responsible for leptogenesis in canonical seesaw with 3 heavy đ đ (Ellis, Hisano, Raidal , Shimiz,â01) The aim of this work is to show that the CPV phases in Îœ mixing âą matrix can be directly responsible for leptogenesis in a minimal seesaw model. Low energy Îœ experiments may give us opportunity to probe leptogenesis
Minimal Seesaw Model (Frampton, Glashow, Yanagida, Phys. Lett. B 548, 119 (2002) - Only 2 heavy RH neutrinos are added to the SM 1 ( ïœ ïź ï« c L m N N ) M N Li Dij Rj Rj j Rj 2 ïœ ï ïœ ( 1 3; 1, 2 ) i j - a đ đž , đđđ đ đ đđđ exist in Îœ mixing matrix Very predictive model ! - one light neutrino mass is zero - Impose additional simple theoretical assumptions to reduce free parameters: 7
âą From the seesaw mechanism, we get light neutrino mass matrix âą Parametrizing 3x2 matrix đ đž âą Diagonalizing by PMNS mixing matrix âą For normal hierarchy (NH), đ 1 = 0, whereas đ 3 = 0 for inverted hierarchy(IH)
âą The following relation holds in general âą đ is a 2x2 complex orthogonal matrix đŠ 2 + đ§ 2 = 1
âą Introducing 1 zero texture in đ đž (reflecing lepton flavor symmetry) đ đ = 0 đ đ = 0 đ 1 đ 1 đ 2 đ 1 0 đ 2 đ 1 đ 1 đ 1 đ 2 đ 1 đ 1 đ 2 đ 2 đ 2 đ 1 đ 2 đ 2 đ 2 0 đ 2 đ 2 0 đ 2 đ 3 đ 11 đ 3 đ 2 đ 3 đ 1 đ 3 đ 2 đ 3 Case(c) Case(a) Case(b) đ 1 đ 1 0 đ 1 đ 1 đ 2 đ 1 đ 1 đ 1 đ 2 đ 1 đ 1 đ 2 đ 2 đ 2 đ 1 đ 2 0 đ 1 đ 2 đ 2 đ 2 đ 1 đ 3 đ 2 đ 3 đ 1 đ 3 đ 2 đ 3 đ 1 đ 3 0 Case(f) Case(d) Case(e)
Leptogenesis ï§ Generate L from the direct CP violation in RH neutrino decay âą CP violation ï§ L gets converted to B via EW anomaly: đ đ¶ âđ đ 1 đ đ¶ = đ¶ ~Îș đ đż đ â
For NH Case(a) đ 1 â sin 2(đ đž + đ đđđ ) Case(b) 2 đ 23 2 sin 2đ đđđ â 2đ 12 đĄ 12 đ 23 đĄ 23 đĄ 13 sin(đ đž + 2đ đđđ ) đ 1 â đ 12 2 đĄ 23 2 sin 2đ đđđ + 2đ 12 đĄ 12 đ 23 đĄ 23 đĄ 13 sin(đ đž + 2đ đđđ ) Case(c) đ 1 â đ 12 For IH Case(a) đ 1 â sin 2(đ đđđ ) Case(b) 2 đ 23 2 sin 2đ đđđ â 2đ 12 đĄ 12 đ 23 đĄ 23 đĄ 13 sin(đ đž + 2đ đđđ ) đ 1 â đĄ 12 2 đ 23 2 sin 2đ đđđ + 2đ 12 đĄ 12 đ 23 đĄ 23 đĄ 13 sin(đ đž + 2đ đđđ ) Case(c) đ 1 â đ 12 âą For đ 2 â« đ 1 , đ 1 depends on đ 1
Numerical Results (Gonsalez-Garcia, Maltoni, Schwetz, arXiv:1512.06856)
đœ đȘ vs. ( đș đŹ + đș đ”đđ ) for NH case (a) âą đ 1 = 10 8 GeV đ 2 đ 1 = 10 4 âą đœ đȘ +0.4 Ă 10 â9 đ đ¶ = 6.5 â0.3 đș = (đș đŹ + đș đ”đđ )
âą đ 1 = 10 8 GeV đœ đȘ vs. đș đŹ đ 2 âą đ 1 = 10 4 âą đ đđđ = đ
âą đ 1 = 10 8 GeV đœ đȘ vs. đș đŹ đ 2 âą đ 1 = 10 4 âą đ đđđ = đ/2
âą đ 1 = 10 8 GeV đœ đȘ vs. đș đ”đđ đ 2 âą đ 1 = 10 4 âą đ đž =1.5 đ ìŹêž°ì ììì ì ë „íììì€ . đ đđđ
Allowed region ( đ 1 ( Ă 10 5 ) vs. đ đž + đ đđđ ) đ 2 âą đ 1 = 10 4 âą For NH case (a) +0.4 Ă 10 â9 đ đ¶ = 6.5 â0.3 đ đž + đ đđđ
Allowed region ( đ 1 (Ă 10 5 ) vs. đ đž ) đ 2 âą đ 1 = 10 4 âą For NH case (b) đ đđđ
Allowed region ( đ 1 (Ă 10 5 ) vs. đ đž ) đ 2 âą đ 1 = 10 4 âą For NH case (c) đ đđđ
đœ đȘ vs. đș đ”đđ for IH case (a) âą đ 1 = 10 8 GeV đ 2 đ 1 = 10 4 âą đœ đȘ đș đ”đđ
Allowed region ( đ 1 (Ă 10 5 ) vs. đ đđđ ) đ 2 đ 1 = 10 4 âą âą For IH case (a) đș đ”đđ
Correlation to neutrinoless double beta decay 2 + đ 2 đ đ2 2 + đ 3 đ đ3 | đ đ | = |đ 1 đ đ1 2 đ đđ đđđ | âą For NH, đ đ depends on both đ đ·đ , đ đđđ âą For IH, đ đ depends on đ đđđ but not so sensitive to it.
Conclusion âą Establishing LCPV is one of the most challenging tasks in future neutrino experiments. âą Low energy LCPV may or may not play an essential role in existing our universe. âą While leptogenesis in seesaw model with 3 RH vs is not related with low E LCPV, we find that low energy LCP phases may be responsible for leptogenesis in a minimal seesaw model.
Recommend
More recommend