coupled data assimilation for ocean biogeochemical models
play

Coupled Data Assimilation for Ocean-Biogeochemical Models Lars - PowerPoint PPT Presentation

Coupled Data Assimilation for Ocean-Biogeochemical Models Lars Nerger, Himansu Pradhan, Michael Goodliff Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Bremerhaven, Germany ISDA 2019, Kobe, Japan, January 21 24,


  1. Coupled Data Assimilation for Ocean-Biogeochemical Models Lars Nerger, Himansu Pradhan, Michael Goodliff Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Bremerhaven, Germany ISDA 2019, Kobe, Japan, January 21 – 24, 2019 AWI

  2. Coupled Ocean-Biogeochemical Models Ecosystem Physics Biogeochemical Model, … Ocean Circulation Model km coupling velocities Temperature Finite-Element Sea Ice R egulated Eco system 1.85 Ocean Model M odel – Version 2 FESOM REcoM2 Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models 1 1

  3. Biogeochemical Process Models Wide variations of the model formulation Example: REcoM-2 R egulated Eco system M odel – Version 2 (Hauck et al., 2013 ) Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  4. Satellite Ocean Color Observations This is not a photograph! Natural Color 3/16/2004 Spectral data at 5-8 wavelengths in visible part of spectrum spectral bands in ESA OC-CCI data • Satellite data is water leaving radiance or surface reflectance ➜ Data products are derived from this Picture source: Suomi-NPP/VIIRS, December 10, 2018 NASA (oceancolor.gsfc.nasa.gov) Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  5. <latexit sha1_base64="qnJs0B1X5/hxhzawdCAyXmdvxQ=">ACYXicbZFNa9wEIZlN2STZM6TEXkSWwSyHYJdBeAqG5NBDWrJYL0xY+3YKyLRhqHLMZ/srdeukfqXbXhXwNCL16ZoaRXqWVkpbC8Lfnv1l7+259Y7O39X5750Owu3dly9oIHIlSleYmBYtKahyRJIU3lUEoUoX6d3ZIn9j8bKUl/SvMJAbmWmRADiXBgyrzpInCdnB2/j2BIT/hkIT8E49tXSNPIna2OHZKwo8H/6tUpzgyI5ucgVm7gFJImVTW2w/Yxyg2idiw2Mp/RsNtuZRL0w6NwGfyliDrRZ1cJMGveFqKukBNQoG14yisaNKAISkUtr24tliBuIMcx05qKNBOmqVDLT90ZMqz0riliS/p4GCmvnReoqC6CZfZ5bwNdy45qyr5NG6qom1GI1KsVp5Iv7OZTaVCQmjsBwkh3Vy5m4Gwj9yk9Z0L0/MkvxdXno8jpH8f902+dHRtsnx2wAYvYF3bKztkFGzHB/nhr3ra34/31N/3A31uV+l7X85E9CX/H7XntUo=</latexit> <latexit sha1_base64="qnJs0B1X5/hxhzawdCAyXmdvxQ=">ACYXicbZFNa9wEIZlN2STZM6TEXkSWwSyHYJdBeAqG5NBDWrJYL0xY+3YKyLRhqHLMZ/srdeukfqXbXhXwNCL16ZoaRXqWVkpbC8Lfnv1l7+259Y7O39X5750Owu3dly9oIHIlSleYmBYtKahyRJIU3lUEoUoX6d3ZIn9j8bKUl/SvMJAbmWmRADiXBgyrzpInCdnB2/j2BIT/hkIT8E49tXSNPIna2OHZKwo8H/6tUpzgyI5ucgVm7gFJImVTW2w/Yxyg2idiw2Mp/RsNtuZRL0w6NwGfyliDrRZ1cJMGveFqKukBNQoG14yisaNKAISkUtr24tliBuIMcx05qKNBOmqVDLT90ZMqz0riliS/p4GCmvnReoqC6CZfZ5bwNdy45qyr5NG6qom1GI1KsVp5Iv7OZTaVCQmjsBwkh3Vy5m4Gwj9yk9Z0L0/MkvxdXno8jpH8f902+dHRtsnx2wAYvYF3bKztkFGzHB/nhr3ra34/31N/3A31uV+l7X85E9CX/H7XntUo=</latexit> <latexit sha1_base64="qnJs0B1X5/hxhzawdCAyXmdvxQ=">ACYXicbZFNa9wEIZlN2STZM6TEXkSWwSyHYJdBeAqG5NBDWrJYL0xY+3YKyLRhqHLMZ/srdeukfqXbXhXwNCL16ZoaRXqWVkpbC8Lfnv1l7+259Y7O39X5750Owu3dly9oIHIlSleYmBYtKahyRJIU3lUEoUoX6d3ZIn9j8bKUl/SvMJAbmWmRADiXBgyrzpInCdnB2/j2BIT/hkIT8E49tXSNPIna2OHZKwo8H/6tUpzgyI5ucgVm7gFJImVTW2w/Yxyg2idiw2Mp/RsNtuZRL0w6NwGfyliDrRZ1cJMGveFqKukBNQoG14yisaNKAISkUtr24tliBuIMcx05qKNBOmqVDLT90ZMqz0riliS/p4GCmvnReoqC6CZfZ5bwNdy45qyr5NG6qom1GI1KsVp5Iv7OZTaVCQmjsBwkh3Vy5m4Gwj9yk9Z0L0/MkvxdXno8jpH8f902+dHRtsnx2wAYvYF3bKztkFGzHB/nhr3ra34/31N/3A31uV+l7X85E9CX/H7XntUo=</latexit> <latexit sha1_base64="qnJs0B1X5/hxhzawdCAyXmdvxQ=">ACYXicbZFNa9wEIZlN2STZM6TEXkSWwSyHYJdBeAqG5NBDWrJYL0xY+3YKyLRhqHLMZ/srdeukfqXbXhXwNCL16ZoaRXqWVkpbC8Lfnv1l7+259Y7O39X5750Owu3dly9oIHIlSleYmBYtKahyRJIU3lUEoUoX6d3ZIn9j8bKUl/SvMJAbmWmRADiXBgyrzpInCdnB2/j2BIT/hkIT8E49tXSNPIna2OHZKwo8H/6tUpzgyI5ucgVm7gFJImVTW2w/Yxyg2idiw2Mp/RsNtuZRL0w6NwGfyliDrRZ1cJMGveFqKukBNQoG14yisaNKAISkUtr24tliBuIMcx05qKNBOmqVDLT90ZMqz0riliS/p4GCmvnReoqC6CZfZ5bwNdy45qyr5NG6qom1GI1KsVp5Iv7OZTaVCQmjsBwkh3Vy5m4Gwj9yk9Z0L0/MkvxdXno8jpH8f902+dHRtsnx2wAYvYF3bKztkFGzHB/nhr3ra34/31N/3A31uV+l7X85E9CX/H7XntUo=</latexit> Satellite Chlorophyll Data (the most common product) Natural Color 3/16/2004 Chlorophyll Concentrations Chlorophyll computed as 4 th order polynomial of reflectance at two wavelengths: ✓ R ( λ blue ) 4 ◆◆ i ✓ X log 10 ( CHL a ) = a 0 + a i log 10 R ( λ green ) i =1 or combined with linear three-wavelength dependence (this is empirical! – derived from statistical analysis) Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models Figure: NASA � Visible Earth � , Image: SeaWiFS Project, NASA/GSFC & Orbimage

  6. Example: Chlorophyll-a (SeaWiFS) mg/m 3 Daily gridded SeaWiFS chlorophyll data Ø gaps: satellite track, clouds, polar nights Ø 30% to 50% data coverage Ø irregular data availability Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models Nerger, L., and W.W. Gregg. J. Marine Systems 68 (2007) 237

  7. Data Assimilation Issues Model Much higher error than in physics • Skill Only fraction of fields observed • Complexity Observations Fields are less constrained • Data gaps • Data error level 15 - 30% � representation error • Empiric algorithms Assimilation • Approx. log-normal Need to transform concentrations � representation error • Diurnal variability Unknown, but expected to be high • Representation errors Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  8. Example 1 Assimilation of total chlorophyll to constrain 2 phytoplankton groups Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  9. Example: Global Chlorophyll Assimilation Global configuration MITgcm 80 o N - 80 o S, 30 layers General ocean circulation model Resolution: of MIT ( Marshall et al., 1997 ). lon : 2 deg lat : 2 deg in North up to 0.38 deg in South REcoM-2 R egulated Eco system M odel – Version 2 (Hauck et al., 2013 ) Assimilate with PDAF (http://pdaf.awi.de) Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  10. Assimilation of Total Chlorophyll Assimilated : Total chlorophyll from ESA OC-CCI Total chlorophyll (5 day composite) mg/m 3 Assimilation : • Assimilate satellite total chlorophyll (ESA Ocean color - climate change initiative): Chl TOT = Chl DIA + Chl PHY • Handle logarithmic concentrations log(Chl TOT ), log(Chl DIA ), log(Chl PHY ) • Multivariate update through, e.g. logarithmic observation errors Cov(log(Chl TOT ), log(Chl DIA )) • How are both phytoplankton groups influenced? • Validate with satellite and in situ data Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  11. Assimilation of Total Chlorophyll Assimilated : Verification : Phytoplankton group data Total chlorophyll from ESA OC-CCI SynSenPFT (Losa et al. 2018) mg/m 3 Total chlorophyll (5 day composite) Small phytoplankton mg/m 3 mg/m 3 Diatoms logarithmic observation errors Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  12. Effect on Chlorophyll in Phytoplankton Groups logarithmic RMS errors (southern regions) • Assimilation improves groups Small phytoplankton Diatoms individually through cross- covariances • Stronger error-reductions for Diatoms • In situ data comparison: RMSe Free Assim. Diatoms 1.3 0.91 Small Phyto. 0.53 0.45 (bias and correlation also improved) Current work • Asses impact of assimilating chlorophyll group data (much lower errors for diatoms) Pradhan et al., J. Geophy. Res. Oceans, in press , doi:10.1029/2018JC014329 Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  13. Ensemble-estimated Cross-correlations Cross correlations between total and group chlorophyll • Significantly different correlations for small phytoplankton and diatoms • Negative correlations exist (despite Chl TOT = Chl DIA + Chl PHY ) Pradhan et al., J. Geophy. Res. Oceans, in press , doi:10.1029/2018JC014329 Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  14. Example 2 Weakly- and Strongly Coupled Assimilation Constrain Biogeochemistry with Temperature Data Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  15. Example: weakly- and strongly coupled assimilation HBM (Hiromb-BOOS Model) – operationally used at Germany Federal Maritime and Hydrographic Agency 5 km km North Sea Baltic Sea 900 m Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models 1 1

  16. Biogeochemical model: ERGOM N 2 O 2 Atmosphere O 2 N 2 Nutrients Zooplankton Phytoplankton 3- PO 4 Micro- Cyanobacteria zooplankton - NO 3 Flagellates + NH 4 Diatoms Meso- zooplankton Si Detritus Si Ocean Detritus N Sediment Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  17. Observations – Sea Surface Temperature (SST) NOAA/AVHRR Satellite data 10 April 2012 25 May 2012 • 12-hour composites • Vastly varying data coverage (due to clouds) • Effect on biogeochemistry? • Assimilation using assimilation framework PDAF Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  18. Weakly & strongly coupled effect on biogeochemistry Oxygen mean for May 2012 (as mmol O / m 3 ) Free run Assimilation WEAK Free run Free – Assimilation WEAK Changes up to 8% (slight error reductions) l Larger in Baltic than North Sea l Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

  19. Weakly & strongly coupled effect on biogeochemistry Oxygen mean for May 2012 (as mmol O / m 3 ) Free run Assimilation WEAK Free run Free – Assimilation WEAK Assimilation STRONG Free – Assimilation STRONG Strongly coupled l slightly larger changes l Strongly coupled DA further improves oxygen l Used actual (linear) concentrations Lars Nerger et al. – Coupled DA for Ocean Biogeochemical Models

Recommend


More recommend