correction codes
play

Correction Codes Gerardo A. Paz-Silva and Daniel Lidar Center for - PowerPoint PPT Presentation

Dynamical Decoupling and Quantum Error Correction Codes Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California GAPS and DAL paper in preparation 1 Dynamical Decoupling


  1. Dynamical Decoupling and Quantum Error Correction Codes Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California GAPS and DAL paper in preparation 1

  2. Dynamical Decoupling and Quantum Error Correction Codes (SXDD) Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California GAPS and DAL paper in preparation 2

  3. Motivation qMac 𝑰 𝑻 3

  4. Motivation 𝑰 π‘ͺ qMac 𝑰 𝑻 4

  5. Motivation 𝑰 π‘ͺ 𝑰 𝑻π‘ͺ 𝑰 𝑻π‘ͺ qMac 𝑰 𝑻 𝑰 𝑻π‘ͺ 𝑰 𝑻π‘ͺ 5

  6. Motivation 𝑰 π‘ͺ 𝑰 𝑻π‘ͺ 𝑰 𝑻π‘ͺ QEC + FT qMac 𝑰 𝑻 𝑰 𝑻π‘ͺ 𝑰 𝑻π‘ͺ 6

  7. Motivation 𝑰 π‘ͺ Dynamical Decoupling 𝑰 𝑻π‘ͺ 𝑰 𝑻π‘ͺ QEC + FT qMac 𝑰 𝑻 𝑰 𝑻π‘ͺ 𝑰 𝑻π‘ͺ 7

  8. Motivation 𝑰 π‘ͺ Dynamical Decoupling 𝑰 𝑻π‘ͺ 𝑰 𝑻π‘ͺ 𝑰′ 𝑻π‘ͺ QEC + FT 𝑰′ 𝑻π‘ͺ qMac 𝑰 𝑻 𝑰 𝑻π‘ͺ 𝑰′ 𝑻π‘ͺ 𝑰′ 𝑻π‘ͺ 𝑰 𝑻π‘ͺ 8

  9. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ [[n,k,d]] QEC code ο€ 

  10. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = [[n,k,d]] QEC code ο€ 

  11. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = πœƒ 𝐸𝐸 < πœƒ 0 [[n,k,d]] QEC code ο€ 

  12. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = πœƒ 𝐸𝐸 < πœƒ 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β€’ Enhanced fidelity of physical gates via appended DD sequences ο€ 

  13. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = πœƒ 𝐸𝐸 < πœƒ 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β€’ Enhanced fidelity of physical gates via appended DD sequences β€’ Order of decoupling N cannot be arbitrarily large. ο€ 

  14. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = πœƒ 𝐸𝐸 < πœƒ 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β€’ Enhanced fidelity of physical gates via appended DD sequences β€’ Order of decoupling N cannot be arbitrarily large. οƒΌ Unless 𝐼 𝑇𝐢 has restricted locality οƒ  β€˜ Local-bath assumption ’

  15. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = πœƒ 𝐸𝐸 < πœƒ 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β€’ Enhanced fidelity of physical gates via appended DD sequences β€’ Order of decoupling N cannot be arbitrarily large. οƒΌ Unless 𝐼 𝑇𝐢 has restricted locality οƒ  β€˜ Local-bath assumption ’ < FT

  16. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = πœƒ 𝐸𝐸 < πœƒ 0 [[n,k,d]] QEC code DD DD DD DD DD n – qubit Pauli basis as decoupling group οƒ  No β€˜local bath assumption’ Ng,Lidar,Preskil lhas restricted locality β€˜ Local-bath assumption ’ β€’ β€’ Length of sequence exponential in 2n Enhanced fidelity of physical gates via appended DD sequences β€’ Pulses look like errors to the code οƒ  limits possible integration with other schemes β€’ Order of decoupling N cannot be arbitrarily large. οƒΌ Unless 𝐼 𝑇𝐢 𝑇𝐢 𝐢 𝑇𝐢 has restricted locality οƒ  β€˜ Local-bath < FT assumption ’

  17. 𝐼 = π½βŠ—πΌ 𝐢 + 𝐼 𝑇𝐢 οƒ  𝑉 Ο„ π‘›π‘—π‘œ = 𝑓 βˆ’π‘—(𝐼 Ο„ π‘›π‘—π‘œ ) πœƒ 0 = 𝐼 𝑇𝐢 Ο„ π‘›π‘—π‘œ 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 π‘ˆ+𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 ) Desiderata for DD +QEC: 𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃 π‘ˆ 𝑂+1 πœƒ 𝐸𝐸 (𝑂) = I. No extra locality assumptions πœƒ 𝐸𝐸 < πœƒ 0 II. Pulses in the code III. Shorter sequences than full decoupling approach. [[n,k,d]] QEC code DD DD DD DD DD πœƒ 𝐸𝐸 < πœƒ 0 n – qubit Pauli basis as decoupling group οƒ  No β€˜local bath assumption’ Ng,Lidar,Preskil lhas restricted locality β€˜ Local-bath assumption ’ β€’ β€’ Length of sequence exponential in 2n Enhanced fidelity of physical gates via appended DD sequences β€’ Pulses look like errors to the code οƒ  limits possible integration with other schemes β€’ Order of decoupling N cannot be arbitrarily large. οƒΌ Unless 𝐼 𝑇𝐢 𝑇𝐢 𝐢 𝑇𝐢 has restricted locality οƒ  β€˜ Local-bath < FT assumption ’

  18. The magic is in the decoupling group 18

  19. The magic is in the decoupling group Too small οƒ  No arbitrary order decoupling οƒ  No general Hamiltonians Too large οƒ  Overkill οƒ  Shorter sequences are better 19

  20. The magic is in the decoupling group Too small οƒ  No arbitrary order decoupling οƒ  No general Hamiltonians Too large οƒ  Overkill οƒ  Shorter sequences are better Mutually Orthogonal Operator (generator) Set = {Ω 𝑗 } 𝑗=1,…,𝐿 β€’ ( Ω 𝑗 ) 2 = 𝐽 Ω 𝑗 Ω π‘˜ = βˆ’1 𝑔(𝑗,π‘˜) Ω π‘˜ Ω 𝑗 ; 𝑔(𝑗, π‘˜) = {0,1} Ω 𝑗 Ω π‘˜ β‰  Ω 𝑙 20

  21. The magic is in the decoupling group Too small οƒ  No arbitrary order decoupling οƒ  No general Hamiltonians Too large οƒ  Overkill οƒ  Shorter sequences are better Mutually Orthogonal Operator (generator) Set = {Ω 𝑗 } 𝑗=1,…,𝐿 β€’ ( Ω 𝑗 ) 2 = 𝐽 Ω 𝑗 Ω π‘˜ = βˆ’1 𝑔(𝑗,π‘˜) Ω π‘˜ Ω 𝑗 ; 𝑔(𝑗, π‘˜) = {0,1} Ω 𝑗 Ω π‘˜ β‰  Ω 𝑙 Pulses οƒ  <MOOS> Concatenated Dynamical Decoupling (CDD) (2 𝐿 ) 𝑂 pulses [Khodjasteh and Lidar, Phys. Rev. Lett. 95, 180501 (2005)] Pulses οƒ  MOOS Nested Uhrig Dynamical Decoupling (NUDD) (𝑂 + 1) 𝐿 pulses [Wang and Liu, Phys. Rev. A 83, 022306 (2011)] 21

  22. What we propose… Stabilizer generators = {S 𝑗 } 𝑗=1,…,𝑅 β€’ MOOS = {S 𝑗 } 𝑗=1,…,𝑅 22

  23. What we propose… Stabilizer generators = {S 𝑗 } 𝑗=1,…,𝑅 β€’ (𝑀) , Z 𝑗 (𝑀) } 𝑗=1,…,𝑙 Logical operators (Pauli basis) = { X 𝑗 β€’ (𝑀) , Z 𝑗 (𝑀) } 𝑗=1,…,𝑙 MOOS = {S 𝑗 } 𝑗=1,…,𝑅 MOOS = {S 𝑗 } 𝑗=1,…,𝑅 ⋃ { X 𝑗 23

  24. What we propose… Stabilizer generators = {S 𝑗 } 𝑗=1,…,𝑅 β€’ (𝑀) , Z 𝑗 (𝑀) } 𝑗=1,…,𝑙 Logical operators (Pauli basis) = { X 𝑗 β€’ (𝑀) , Z 𝑗 (𝑀) } 𝑗=1,…,𝑙 MOOS = {S 𝑗 } 𝑗=1,…,𝑅 MOOS = {S 𝑗 } 𝑗=1,…,𝑅 ⋃ { X 𝑗 𝑉 𝐸𝐸 π‘ˆ = 𝑓 βˆ’π‘—(𝐼 βˆ…,𝑓𝑔𝑔 𝑃 π‘ˆ +𝐼 𝑇𝐢,𝑓𝑔𝑔 𝑃(π‘ˆ 𝑂+1 )) 𝐼 βˆ…,𝑓𝑔𝑔 ∝ {S 𝑗 } 𝑗=1,…,𝑅 Contains no physical or logical errors ! Only harmless terms ! Even if 𝐼 𝑇𝐢 is a logical error! 24

  25. What do we gain ? οƒΌ No extra locality assumptions: The DD group is powerful enough. CDD: οƒ  NO higher order Magnus term is UNDECOUPLABLE and HARMFUL οƒ  The next level of concatenation can deal with it NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation) 𝑰 𝑻π‘ͺ 1 - 0 25

  26. What do we gain ? οƒΌ No extra locality assumptions: The DD group is powerful enough. CDD: οƒ  NO higher order Magnus term is UNDECOUPLABLE and HARMFUL οƒ  The next level of concatenation can deal with it NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation) 𝑰 𝑻π‘ͺ 1 - 0 2 - 0 οƒΌ DD Pulses are bitwise / transversal in the code Pulses do not look like errors to the code οƒ  Allows interaction with other protection schemes. 26

  27. What else do we gain ? β€’ Shorter sequences than full decoupling approach: For stabilizer/subsystem codes: MOOS : n-k-g stabilizers + 2k logical operators 𝐷𝐸𝐸 (<Ω 𝑗 >,𝑂) οƒ  2 π‘œ+π‘™βˆ’π‘• 𝑂 < 2 2π‘œπ‘‚ 𝑂𝑉𝐸𝐸 ({Ω 𝑗 ,𝑂}) οƒ  (𝑂 + 1) π‘œ+π‘™βˆ’π‘• < (𝑂 + 1) 2π‘œ 27

Recommend


More recommend