Dynamical Decoupling and Quantum Error Correction Codes Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California GAPS and DAL paper in preparation 1
Dynamical Decoupling and Quantum Error Correction Codes (SXDD) Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California GAPS and DAL paper in preparation 2
Motivation qMac π° π» 3
Motivation π° πͺ qMac π° π» 4
Motivation π° πͺ π° π»πͺ π° π»πͺ qMac π° π» π° π»πͺ π° π»πͺ 5
Motivation π° πͺ π° π»πͺ π° π»πͺ QEC + FT qMac π° π» π° π»πͺ π° π»πͺ 6
Motivation π° πͺ Dynamical Decoupling π° π»πͺ π° π»πͺ QEC + FT qMac π° π» π° π»πͺ π° π»πͺ 7
Motivation π° πͺ Dynamical Decoupling π° π»πͺ π° π»πͺ π°β² π»πͺ QEC + FT π°β² π»πͺ qMac π° π» π° π»πͺ π°β² π»πͺ π°β² π»πͺ π° π»πͺ 8
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ [[n,k,d]] QEC code ο
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = [[n,k,d]] QEC code ο
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = π πΈπΈ < π 0 [[n,k,d]] QEC code ο
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = π πΈπΈ < π 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β’ Enhanced fidelity of physical gates via appended DD sequences ο
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = π πΈπΈ < π 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β’ Enhanced fidelity of physical gates via appended DD sequences β’ Order of decoupling N cannot be arbitrarily large. ο
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = π πΈπΈ < π 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β’ Enhanced fidelity of physical gates via appended DD sequences β’ Order of decoupling N cannot be arbitrarily large. οΌ Unless πΌ ππΆ has restricted locality ο β Local-bath assumption β
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = π πΈπΈ < π 0 [[n,k,d]] QEC code DD DD DD DD DD Ng,Lidar,Preskill PRA 84, 012305(2011) β’ Enhanced fidelity of physical gates via appended DD sequences β’ Order of decoupling N cannot be arbitrarily large. οΌ Unless πΌ ππΆ has restricted locality ο β Local-bath assumption β < FT
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = π πΈπΈ < π 0 [[n,k,d]] QEC code DD DD DD DD DD n β qubit Pauli basis as decoupling group ο No βlocal bath assumptionβ Ng,Lidar,Preskil lhas restricted locality β Local-bath assumption β β’ β’ Length of sequence exponential in 2n Enhanced fidelity of physical gates via appended DD sequences β’ Pulses look like errors to the code ο limits possible integration with other schemes β’ Order of decoupling N cannot be arbitrarily large. οΌ Unless πΌ ππΆ ππΆ πΆ ππΆ has restricted locality ο β Local-bath < FT assumption β
πΌ = π½βπΌ πΆ + πΌ ππΆ ο π Ο πππ = π βπ(πΌ Ο πππ ) π 0 = πΌ ππΆ Ο πππ π πΈπΈ π = π βπ(πΌ β ,πππ π+πΌ ππΆ,πππ π π π+1 ) Desiderata for DD +QEC: πΌ ππΆ,πππ π π π+1 π πΈπΈ (π) = I. No extra locality assumptions π πΈπΈ < π 0 II. Pulses in the code III. Shorter sequences than full decoupling approach. [[n,k,d]] QEC code DD DD DD DD DD π πΈπΈ < π 0 n β qubit Pauli basis as decoupling group ο No βlocal bath assumptionβ Ng,Lidar,Preskil lhas restricted locality β Local-bath assumption β β’ β’ Length of sequence exponential in 2n Enhanced fidelity of physical gates via appended DD sequences β’ Pulses look like errors to the code ο limits possible integration with other schemes β’ Order of decoupling N cannot be arbitrarily large. οΌ Unless πΌ ππΆ ππΆ πΆ ππΆ has restricted locality ο β Local-bath < FT assumption β
The magic is in the decoupling group 18
The magic is in the decoupling group Too small ο No arbitrary order decoupling ο No general Hamiltonians Too large ο Overkill ο Shorter sequences are better 19
The magic is in the decoupling group Too small ο No arbitrary order decoupling ο No general Hamiltonians Too large ο Overkill ο Shorter sequences are better Mutually Orthogonal Operator (generator) Set = {β¦ π } π=1,β¦,πΏ β’ ( β¦ π ) 2 = π½ β¦ π β¦ π = β1 π(π,π) β¦ π β¦ π ; π(π, π) = {0,1} β¦ π β¦ π β β¦ π 20
The magic is in the decoupling group Too small ο No arbitrary order decoupling ο No general Hamiltonians Too large ο Overkill ο Shorter sequences are better Mutually Orthogonal Operator (generator) Set = {β¦ π } π=1,β¦,πΏ β’ ( β¦ π ) 2 = π½ β¦ π β¦ π = β1 π(π,π) β¦ π β¦ π ; π(π, π) = {0,1} β¦ π β¦ π β β¦ π Pulses ο <MOOS> Concatenated Dynamical Decoupling (CDD) (2 πΏ ) π pulses [Khodjasteh and Lidar, Phys. Rev. Lett. 95, 180501 (2005)] Pulses ο MOOS Nested Uhrig Dynamical Decoupling (NUDD) (π + 1) πΏ pulses [Wang and Liu, Phys. Rev. A 83, 022306 (2011)] 21
What we proposeβ¦ Stabilizer generators = {S π } π=1,β¦,π β’ MOOS = {S π } π=1,β¦,π 22
What we proposeβ¦ Stabilizer generators = {S π } π=1,β¦,π β’ (π) , Z π (π) } π=1,β¦,π Logical operators (Pauli basis) = { X π β’ (π) , Z π (π) } π=1,β¦,π MOOS = {S π } π=1,β¦,π MOOS = {S π } π=1,β¦,π β { X π 23
What we proposeβ¦ Stabilizer generators = {S π } π=1,β¦,π β’ (π) , Z π (π) } π=1,β¦,π Logical operators (Pauli basis) = { X π β’ (π) , Z π (π) } π=1,β¦,π MOOS = {S π } π=1,β¦,π MOOS = {S π } π=1,β¦,π β { X π π πΈπΈ π = π βπ(πΌ β ,πππ π π +πΌ ππΆ,πππ π(π π+1 )) πΌ β ,πππ β {S π } π=1,β¦,π Contains no physical or logical errors ! Only harmless terms ! Even if πΌ ππΆ is a logical error! 24
What do we gain ? οΌ No extra locality assumptions: The DD group is powerful enough. CDD: ο NO higher order Magnus term is UNDECOUPLABLE and HARMFUL ο The next level of concatenation can deal with it NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation) π° π»πͺ 1 - 0 25
What do we gain ? οΌ No extra locality assumptions: The DD group is powerful enough. CDD: ο NO higher order Magnus term is UNDECOUPLABLE and HARMFUL ο The next level of concatenation can deal with it NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation) π° π»πͺ 1 - 0 2 - 0 οΌ DD Pulses are bitwise / transversal in the code Pulses do not look like errors to the code ο Allows interaction with other protection schemes. 26
What else do we gain ? β’ Shorter sequences than full decoupling approach: For stabilizer/subsystem codes: MOOS : n-k-g stabilizers + 2k logical operators π·πΈπΈ (<β¦ π >,π) ο 2 π+πβπ π < 2 2ππ πππΈπΈ ({β¦ π ,π}) ο (π + 1) π+πβπ < (π + 1) 2π 27
Recommend
More recommend