control of powertrain systems at the high efficiency limit
play

Control of Powertrain Systems at the High Efficiency Limit Anna G. - PDF document

Control of Powertrain Systems at the High Efficiency Limit Anna G. Stefanopoulou, University of Michigan annastef@umich.edu Thanks to the National Science Foundation US Department of Energy US Army with Ford, Bosch, GE,


  1. � Control of Powertrain Systems � at the High Efficiency Limit � Anna G. Stefanopoulou, University of Michigan annastef@umich.edu Thanks to the National Science Foundation US Department of Energy US Army with Ford, Bosch, GE, A123/Navitas, & Daimler Powertrain ! Control ! American n Co Cont ntrol Co Conf nferenc nce ,June une 2014 (1)/46 Outline -- Chaotic Engines � -- Stressed-out Batteries � � -- Dead-ended Fuel Cells � Powertrain ! Control ! (2)/46

  2. Global Temperature Change Industrial 10% Commercial 2% Residential 3% Carbon Dioxide (other) 20% Electric Power Methane, NO, F-gases 22% 23% Carbon Dioxide (fossil fuel use) 57% Transportation 20% Commercial 5% Passenger 15% Powertrain ! Control ! (3)/46 A Glance around the Globe Powertrain ! Control ! (4)/46

  3. History Lessons (US-focused) Powertrain ! Control ! (5)/46 Slow ..? Slender … ? No .., just better! Powertrain ! Control ! (6)/46

  4. Enabling Act..uat..ors Behind-the-Scenes Turbocharging Downsizing Direct Injection Variable Valve Carburetor Multi-Valve gal/100mi/HP Port Fuel Injection And some of the real Actors Port Fuel Injection Jessy’s Air Charge Estimator Variable Ilya @ Ford Valve Timing Anna’s PhD Mrdjan’s diVCT Powertrain ! Control ! (7)/46 Gasoline Engine Efficiency A A Midsize US US Car: 3800 lb lbs Km/h 1700 1700 kgs kgs V6, 3.6L 350 10 FTP − 75 sec 300 1 -- Ford, with its Ecoboost 250 Engine Load [Nm] Sweet turbocharging technology, makes Time / 1877s [%] spot a small engine act big . 0.1 200 -- GM, with its Active Fuel 150 Management cylinder 0.01 deactivation system, makes a big engine act small. 100 0.001 R. Truett, Auto News, Jan 6, 2014 50 0 0.0001 1000 1500 2000 2500 3000 3500 Engine Speed [RPM] Powertrain ! Control ! (8)/46

  5. Efficiency Improvement: Downsizing Original Turbocharged 3.6L V6 2.0L I4 5. Cnv Efficiency Improvements % 4. v/eTC 350 Worst 3. thr/wg FTP − 75 2. TC-Dnsz 0 0 300 5 1. Dnsz − 0 5 10 5 Engine Load [Nm] − 250 0 200 5 − − 1 − 15 0 150 − 5 5% 100 Controlling the 5 10% − 1 0 − 5 − Dynamics − 5 − 15 0 1 50 − − 20 20% 1 5 − − 20 − 25 2 5 − 2 5 − 3500 1000 1500 2000 2500 3000 3500 Engine Speed [RPM] Powertrain ! Control ! (9)/46 Efficiency Improvement: Downsizing Original Turbocharged 3.6L V6 2.0L I4 5. Cnv Efficiency Improvements % 4. v/eTC Worst 3. thr/wg Worst 2. TC-Dnsz 1. Dnsz 5% Controlling the 10% Dynamics 20% Powertrain ! Control ! (10)/46

  6. Cost effectiveness PHEV MPGe EV (estimated) HEV PHEV MPG DIESEL TRBDS--2 TRBDS--1 GDI VVL 12V BAS Micro-HEV VVT FR ** Powertrain ! Control ! Cost effectiveness PHEV MPGe EV (estimated) HEV PHEV MPG ? DIESEL TRBDS--2 TRBDS--1 GDI VVL 12V BAS Micro-HEV VVT FR ** Powertrain ! Control !

  7. Gasoline versus Diesel SCR+ … $ ...$ TWC Exhaust After- Treatment Hot Flame Region: NOx Hot Flame Region: NOx&Soot Gasoline Stoichiometric � Lean � Diesel Spark Compression Ignition (SI) Ignition (CI) Powertrain ! Control ! (13)/46 Gasoline HCCI Diesel Car Makers Seek New Spark In Gas Engines The Wall Street Journal 09/28/04 � … engineers call homogenous-charge compression-ignition, or HCCI and expected to provide 80% of the efficiency of a hybrid or a diesel for 20% of the cost , … � � SI HCCI CI Peak Temperature (K) >2000 1600 1800 NOx emission High Low Medium Combustion Duration (CAD) 40 2-10 40 Powertrain ! Control ! (14)/46

  8. Actuators, Sensors, & Performance Objective Gasoline Systems - HCCI Combustion phasing controlled through trapped dilution In-cylinder pressure sensor Variable Valve Injector θ 50 50 " ref " θ 50 Controller 50 Powertrain ! Control ! HCCI Model Combustion Homogeneous Charge Chemical Kinetics= Arrhenius Integral Powertrain ! Control ! (16)/46

  9. Stable, Unstable, and Limit Cycle Behavior Automotive Engineering SAE 2002-01-0111 – Lund Combustion Regions with Stable and Unstable operation ASME ICE 2000 – Caterpillar Limit cycle behavior SAE 892068– Southwest Research Institute Very Stable and Unstable behavior at different regions Chiang CDC 2004 & TCST 2004 Stability in auto-thermal Blow-Down Temperature, T bd (K) reactors Heerden 1953, Liljenroth 1918 Unstable Limit Stable Cycle Early Combustion Phasing Intake Temperature, T ivc (K) Powertrain ! Control ! (17)/46 Drive around Stable Points! Combustion Clean or Efficient? An Engine Goes for ‘Both of the Above’ By LINDSAY BROOKE August 19, 2007 Chiang CDC 2004 & Chiang, IEEE-TCST 2004 BlowDown Temperature, T bd (K) SAE-2009-01-1131 Early Combustion Phasing Intake Temperature, T ivc (K) Powertrain ! Control ! (18)/46

  10. Controlling Stable, Unstable, and Limit Cycle Behavior CDC 2004 NYT 2007 SAE 2009 @MSU @Alberta, CA @Cambridge, UK @Chalmers, Se @Univ. of Minnesota Gerdes’s team @ Stanford Switching gains (2011) Tunestal’s team @ Lund Nonlinear MPC (2009) Anna’s team @ UMICH Nonlinear Cntr Lyapunov functions (2006) Powertrain ! Control ! (19)/46 Observations from the high variability points Heat Release Analysis Powertrain ! Control ! (20)/46

  11. Detailed Heat Release Observations Key factors for describing CV Nonlinear coupling between ! the recycled thermal energy ! the recycled chemical energy in the unburned fuel Powertrain ! Control ! (21)/46 Model that captures the global behavior ! Period doubling bifurcations ! Thermal runaway ! Noisy simulations match the data Powertrain ! Control ! (22)/46

  12. Controlling Combustion at its Limit Combustion Phasing ( θ 50 ) Injection Timing (u soi ) Powertrain ! Control ! HCCI Control Toolbox ~Torque Moderate � Transient � Avoided Misfire � Phasing Powertrain ! Control ! (24)/46

  13. HCCI Control Toolbox ~Torque Did not slow down � Phasing Reduced Ringing � Powertrain ! Control ! Mode Transitions Significant number of mode transitions during driving cycle! Powertrain ! Control ! (26)/46

  14. To Jump … or not to Jump Powertrain ! Control ! (27)/46 Cost effectiveness of engine technologies PHEV MPGe * EV (estimated) 2025 Target HEV PHEV MPG * HCCI DIESEL TRBDS--2 TRBDS--1 GDI VVL 12V BAS Micro-HEV VVT FR ** Data Sources: 1. Assessment of Fuel Economy Technologies for Light-Duty Vehicles (2011) National Research Council Powertrain ! Control ! 2. * www.fueleconomy.gov DOE & EPA website (MPGe : 1 Gallon of Gasoline = 33.7 kWh) 3. **MPG baseline 2008 midsize cars. NHTSA stats (2014)

  15. The Rational Business Perspective Fuel Price, $ per gallon 2014 Tesla R 04/08 Battery Prices, $/kWh *8 years payback 2012 posting in http://www.washingtonpost.com/ Powertrain ! Control ! (29)/46 Removing the Blinders from Dr. Ilan Gur, ARPA-E Program Director Model-Based Estimation What we Control Current Coolant Flow and Temp Powertrain ! Control ! (30)/46

  16. The Operating Principle LiCoO 2 LiCoO 2 6C+LiCoO 2 " Li x C 6 +Li 1-x CoO 2 +Heat +Swelling Powertrain ! Control ! (31)/46 Graphics from K.Smith, CSM 2010 Models for Electrical State Estimation I Electro-Chemical V x Coupled Diffusion-Reaction Negative electrode (-) Positive electrode (+) Current collector Current collector Fuller et al., 1994; Separator Ramadass et al., 2003; Fathy & Moura, 2011 … x= 0 x= L n x= L n +L s x= L n +L s +L p C 1,n C 1,p Parameter C 12,p C 12,n Li + e - e - r r identification Computation time is difficult I Single-Particle V Model Negative electrode (-) Positive electrode (+) Ning and Popov, 2004; Current collector Current collector C 1,n C 1,p Subramanian et al., 2005; Separator C 12,p C 12,n Di Domenico et al., 2010 r r CY Wang, 2014 Li + e - e - … x= 0 x= L n x= L n +L s x= L n +L s +L p Equivalent-Circuit Model Yurkovich, 2009 Perez et al., 2012; Prasad and Rahn, 2012; Hu et al., 2012 Fidelity Powertrain ! Control ! (32)/46

  17. Models for Thermal State Estimation Distributed Parameter 0.015 31.2 0.01 31 0.005 30.8 Gu and Wang, 2000; 30.6 0 Kumaresan et al., 2008; 30.4 30.2 Lee et al., 2010; -0.005 30 Fleckenstein et al. 2011; -0.01 29.8 29.6 -0.015 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 Reduced-Order Computation time Muratori et al., 2010; Muratori et al., 2012 Lumped Parameter Equivalent-Circuit Mahamud and Park, 2011; Park and Jaura, 2003; Forgez et al., 2010; Lin et al., 2013 Fidelity Powertrain ! Control ! (33)/46 Models for Thermal State Estimation Distributed Parameter 0.015 31.2 0.01 31 0.005 30.8 Gu and Wang, 2000; 30.6 0 Kumaresan et al., 2008; 30.4 30.2 Lee et al., 2010; -0.005 30 Fleckenstein et al. 2011; -0.01 29.8 29.6 -0.015 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 Reduced-Order Muratori et al., 2010; Muratori et al., 2012 Pack Level Lumped Parameter Equivalent-Circuit Mahamud and Park, 2011; Park and Jaura, 2003; Forgez et al., 2010; Lin et al., 2013 Fidelity Powertrain ! Control ! (34)/46

  18. Powering at the Operational Limits T1 T2 T4 T3 Powertrain ! Control ! (35)/46 Powering at the Operational Limits T1 T2 T4 T3 Powertrain ! Control ! (36)/46

  19. Neutron Imaging: Lithium Concentration & Expansion Reactor Core Nationa nal Ins nstitut ute of Stand ndards and nd Techno hnology (NIST) T) 24 MW Reactor Powertrain ! Control ! (37)/46 Neutron Imaging: Lithium Concentration & Expansion Reactor Core Dark Areas= High Lithium Concentration Powertrain ! Control ! (38)/46

Recommend


More recommend