constrained decompositions of integer matrices and their
play

Constrained Decompositions of Integer Matrices and their - PowerPoint PPT Presentation

Constrained Decompositions of Integer Matrices and their Applications to Intensity Modulated Radiation Therapy Cline Engelbeen Advisor: Samuel Fiorini Universit Libre de Bruxelles Facult des Sciences Dpartement de Mathmatique 15


  1. Constrained Decompositions of Integer Matrices and their Applications to Intensity Modulated Radiation Therapy Céline Engelbeen Advisor: Samuel Fiorini Université Libre de Bruxelles Faculté des Sciences Département de Mathématique 15 May 2008 Céline Engelbeen Constrained Decompositions of Integer Matrices

  2. Aim of radiation therapy: Destroying the tumor(s) Preserving the organs located in the radiation field Céline Engelbeen Constrained Decompositions of Integer Matrices

  3. Multileaf collimator (Saint-Luc, Belgium) Céline Engelbeen Constrained Decompositions of Integer Matrices

  4. Leaves of the collimator Céline Engelbeen Constrained Decompositions of Integer Matrices

  5. Planning in 3 steps Fixing the different radiation angles. 1 Determining the intensity function for each angle. 2 Modulating the radiation. 3 Céline Engelbeen Constrained Decompositions of Integer Matrices

  6. Beam-On Time Problem (BOT): Given an intensity matrix I Decompose I as a combination I = α 1 S 1 + α 2 S 2 + · · · + α K S K where S i are C1 matrices α i ∈ N Aim: Minimize α 1 + α 2 + · · · + α K Céline Engelbeen Constrained Decompositions of Integer Matrices

  7.   5 5 3 3 2 2 5 2   I =   5 3 3 2   2 5 5 3  1 1 1 1   1 1 1 1   1 1 0 0  1 1 1 1 0 0 1 0 0 0 1 0       = 2  + 1  + 2       1 1 1 1 1 1 1 0 1 0 0 0     1 1 1 1 0 1 1 1 0 1 1 0 α 1 + α 2 + α 3 = 2 + 1 + 2 = 5 Céline Engelbeen Constrained Decompositions of Integer Matrices

  8. Question: How to optimally decompose  5 5 3 4  2 2 5 2   I =  ?   5 3 3 2  2 5 5 3 Céline Engelbeen Constrained Decompositions of Integer Matrices

  9. Question: How to optimally decompose  5 5 3 4  2 2 5 2   I =  ?   5 3 3 2  2 5 5 3 Observation: rows are independent. Question: How to optimally decompose � � I 1 = 5 5 3 4 ? Céline Engelbeen Constrained Decompositions of Integer Matrices

  10. Standard decomposition: ( 5 5 3 4 ) Céline Engelbeen Constrained Decompositions of Integer Matrices

  11. Standard decomposition: ( 5 5 3 4 ) Céline Engelbeen Constrained Decompositions of Integer Matrices

  12. Standard decomposition: ( 5 5 3 4 ) Céline Engelbeen Constrained Decompositions of Integer Matrices

  13. Standard decomposition: ( 5 5 3 4 ) Céline Engelbeen Constrained Decompositions of Integer Matrices

  14. Standard decomposition: ( 5 5 3 4 ) Céline Engelbeen Constrained Decompositions of Integer Matrices

  15. Standard decomposition: ( 5 5 3 4 ) � � 1 1 0 0 Céline Engelbeen Constrained Decompositions of Integer Matrices

  16. Standard decomposition: ( 5 5 3 4 ) � � 1 1 0 0 � � + 1 1 0 0 Céline Engelbeen Constrained Decompositions of Integer Matrices

  17. Standard decomposition: ( 5 5 3 4 ) � � 1 1 0 0 � � + 1 1 0 0 � � + 1 1 1 1 Céline Engelbeen Constrained Decompositions of Integer Matrices

  18. Standard decomposition: ( 5 5 3 4 ) � � 1 1 0 0 � � + 1 1 0 0 � � + 1 1 1 1 � � + 1 1 1 1 Céline Engelbeen Constrained Decompositions of Integer Matrices

  19. Standard decomposition: ( 5 5 3 4 ) � � 1 1 0 0 � � + 1 1 0 0 � � + 1 1 1 1 � � + 1 1 1 1 � � + 1 1 1 1 Céline Engelbeen Constrained Decompositions of Integer Matrices

  20. Standard decomposition: ( 5 5 3 4 ) � � 1 1 0 0 � � + 1 1 0 0 � � + 1 1 1 1 � � + 1 1 1 1 � � + 1 1 1 1 � � + 0 0 0 1 Céline Engelbeen Constrained Decompositions of Integer Matrices

  21. Standard decomposition: ( 5 5 3 4 ) � � 1 1 0 0 � � + 1 1 0 0 � � + 1 1 1 1 � � + 1 1 1 1 � � + 1 1 1 1 � � + 0 0 0 1 � � 5 5 3 4 Céline Engelbeen Constrained Decompositions of Integer Matrices

  22. Standard decomposition: 0 ( 5 5 3 4 ) 0 � � 1 1 0 0 � � + 1 1 0 0 � � + 1 1 1 1 � � + 1 1 1 1 � � + 1 1 1 1 � � + 0 0 0 1 � � 5 5 3 4 Céline Engelbeen Constrained Decompositions of Integer Matrices

  23. Standard decomposition: 0 ( 5 5 3 4 ) 0 � � 1 1 0 0 � � + 1 1 0 0 � � + 1 1 1 1 � � + 1 1 1 1 � � + 1 1 1 1 � � + 0 0 0 1 � � ∆ = ( 5 0 − 2 1 − 4 ) 5 5 3 4 Céline Engelbeen Constrained Decompositions of Integer Matrices

  24. � � ∆ = 5 0 − 2 1 − 4 Céline Engelbeen Constrained Decompositions of Integer Matrices

  25. � � ∆ = 5 0 − 2 1 − 4 ✁ ✁ ✁ ✁ ✁ ✁ ∆ + = � � 5 0 0 1 0 Céline Engelbeen Constrained Decompositions of Integer Matrices

  26. � � ∆ = 5 0 − 2 1 − 4 ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ✁ ❆ ∆ + = ∆ − = � � � � 5 0 0 1 0 0 0 2 0 4 Céline Engelbeen Constrained Decompositions of Integer Matrices

  27. Two extra constraints Interleaf motion constraint: Kalinowski (2005), Baatar, Hamacher, Ehrgott, Woeginger (2005) ok bad Céline Engelbeen Constrained Decompositions of Integer Matrices

  28. Two extra constraints Interleaf motion constraint: Kalinowski (2005), Baatar, Hamacher, Ehrgott, Woeginger (2005) ok bad Interleaf distance constraint For a constant c = 2: 2 1 3 1 ok bad Céline Engelbeen Constrained Decompositions of Integer Matrices

  29. Two extra constraints Interleaf motion constraint: Kalinowski (2005), Baatar, Hamacher, Ehrgott, Woeginger (2005) ok bad Interleaf distance constraint For a constant c = 2: 2 1 3 1 ok bad Céline Engelbeen Constrained Decompositions of Integer Matrices

  30. Key observation When can we satisfy the interleaf distance constraint without increasing the BOT? Assume that each row of I has the same BOT T . Exemple 1: � 2 � 1 − 2 1 − 2 ∆ = 2 2 − 2 − 1 − 1 The standard decomposition: � 1 � 0 � 0 � � � 1 0 0 1 1 1 0 0 1 2 + + 1 1 0 0 0 1 1 0 0 1 0 0 Céline Engelbeen Constrained Decompositions of Integer Matrices

  31. Key observation When can we satisfy the interleaf distance constraint without increasing the BOT? Assume that each row of I has the same BOT T . Exemple 2: � 2 � 1 − 2 1 − 2 ∆ = 4 − 1 − 1 − 1 − 1 The standard decomposition: � 1 � 1 � 0 � � � 1 0 0 1 0 0 1 1 1 + + 1 0 0 0 1 1 0 0 1 1 1 0 � 0 � 0 0 1 + 1 1 1 1 1 1 + 2 � � δ + δ + 2 k > 1 k k = 1 k = 1 Céline Engelbeen Constrained Decompositions of Integer Matrices

  32. Key observation When can we satisfy the interleaf distance constraint without increasing the BOT? Céline Engelbeen Constrained Decompositions of Integer Matrices

  33. Key observation When can we satisfy the interleaf distance constraint without increasing the BOT? Answer: If each row of I has the same BOT, let T , then the following propositions are equivalent: There exists a decomposition of I of time T which respects the interleaf distance constraint Céline Engelbeen Constrained Decompositions of Integer Matrices

  34. Key observation When can we satisfy the interleaf distance constraint without increasing the BOT? Answer: If each row of I has the same BOT, let T , then the following propositions are equivalent: There exists a decomposition of I of time T which respects the interleaf distance constraint The standard decomposition algorithm gives a decomposition wich respects the interleaf distance constraint Céline Engelbeen Constrained Decompositions of Integer Matrices

  35. Key observation When can we satisfy the interleaf distance constraint without increasing the BOT? Answer: If each row of I has the same BOT, let T , then the following propositions are equivalent: There exists a decomposition of I of time T which respects the interleaf distance constraint The standard decomposition algorithm gives a decomposition wich respects the interleaf distance constraint j j + c � � δ + δ + m ′ n , ∀ m , m ′ , j ≤ mn n = 1 n = 1 j j + c � � δ − δ − m ′ n , ∀ m , m ′ , j ≤ mn n = 1 n = 1 Céline Engelbeen Constrained Decompositions of Integer Matrices

  36. Idea for our model Without constraint: With constraint: Céline Engelbeen Constrained Decompositions of Integer Matrices

  37. BOT-IDC min T N + 1 � ( δ + s.t. mn + w mn ) = T ∀ m ; n = 1 j j + c � � ( δ + ( δ + ∀ j , m , m ′ mn + w mn ) ≤ m ′ n + w m ′ n ) n = 1 n = 1 j j + c � � ( δ − ( δ − mn + w mn ) ≤ m ′ n + w m ′ n ) ∀ j , m , m ′ n = 1 n = 1 w mn ≥ 0 ∀ m , n ; w mn ∈ Z ∀ m , n . Céline Engelbeen Constrained Decompositions of Integer Matrices

Recommend


More recommend