Compact Adaptively Secure ABE from ๐ -Lin: Beyond NC 1 and Towards NL Huijia (Rachel) Lin and Ji Luo 1 / 42
Attribute-Based Encryption [SW05] Setup โ mpk, msk KeyGen msk, ๐ โ sk policy Compact: ct = ๐ ๐ฆ sk Expressive: ๐ โ powerful class of functions ๐ฆ, ct Enc mpk, ๐ฆ, ๐ โ ct Dec sk, ๐, ct, ๐ฆ โ ๐๐ ๐ฆ attribute message Correctness. Learn ๐ if ๐ ๐ฆ โ 0 ( sk is authorized) 2 / 42
Attribute-Based Encryption [SW05] Setup โ mpk, msk KeyGen msk, ๐ ๐ โ sk ๐ Collusion Resistance sk ๐ โs Message is hidden given arbitrary number of unauthorized keys. ๐ฆ, ct Enc mpk, ๐ฆ, ๐ โ ct Security. Hide ๐ if ๐ ๐ ๐ฆ = 0 for all ๐ ( sk ๐ โs are unauthorized) 3 / 42
Adaptive IND-CPA Security mpk ๐ ๐ sk ๐ ๐ Exp ๐ ๐ฆ, ๐ 0 , ๐ 1 ct โ Enc ๐ฆ, ๐ ๐ ๐ ๐ sk ๐ ๐ if for all queried keys ๐ ๐ ๐ฆ = 0 , then Exp 0 โ Exp 1 4 / 42
(Weaker) Selective IND-CPA Security ๐ฆ, Adaptive mpk Security ๐ ๐ sk ๐ ๐ Exp ๐ ๐ 0 , ๐ 1 ct โ Enc ๐ฆ, ๐ ๐ ๐ ๐ sk ๐ ๐ if for all queried keys ๐ ๐ ๐ฆ = 0 , then Exp 0 โ Exp 1 5 / 42
Challenging to have it all Compactness: ct = ๐ ๐ฆ NC 1 and ABP Adaptive Security are non-uniform : Each sk works with Standard Assumptions attribute of fixed length. Goal. Have it ALL for expressive classes of policies. Previously, the largest class was ๐๐ ๐ [KW19]. Contribution 1. Extend to ABP . A rithmetic B ranching P rograms โ NC 1 , arithmetic computation over โค ๐ . 6 / 42
Challenging to have it all Compactness: ct = ๐ ๐ฆ ABE for uniform Adaptive Security computation: Each sk works with Standard Assumptions attribute of any length. Contribution 2. DFA , NFA (regular languages) the first ABE for uniform computation with all above L , NL * (log-space Turing machines) * relaxed compactness 7 / 42
Related Works: Non-Uniform Model NON-standard NOT compact NOT adaptive assumptions [LOSTW10] for MSP [GPSW06] for MSP [LW12] for MSP ๐ -type assumption [GVW13, BGGHNSVV14] for ฮค ๐ poly all-in-one: compact, adaptive, standard assumptions [KW19] for NC 1 โธ ๐ -Lin in pairing groups this work for ABP concurrent [GW20] for BP 8 / 42
Related Works: Uniform Model NON-standard NOT compact or NOT adaptive or assumptions [Wat12, Att14, AMY19, GWW19] for DFA concurrent [GW20] for NFA all-in-one: compact, adaptive, standard assumptions this work for DFA, NFA concurrent [GW20] for DFA ๐ -Lin beyond finite automata [AS16] for P (FE, based on iO) ct = ๐ ๐ฆ ๐๐2 ๐ this work for L, NL (relaxed compactness) sk = ๐ TM 9 / 42
New General Framework computational tool information-theoretic tool I nner- P roduct A rithmetic K ey F unctional E ncryption G arbling S cheme special randomized encoding 1-key 1-ABE = 1-ciphertext secret-key ABE 10 / 42
1-ABE via AKGS and IPFE convenience โ ๐ in secret key Partially Hiding [IW14] AKGS sk ๐,๐ Randomized Encoding เทฃ ๐๐ ๐ฆ ๐๐ ๐ฆ ct ๐ฆ use ๐ as one-time pad Secure: เทฃ ๐๐ ๐ฆ hides ๐ beyond ๐๐ ๐ฆ . It does not hide ๐, ๐ฆ . Simple: RE is linear in ๐ฆ . compute using IPFE โน 11 / 42
Arithmetic Key Garbling Scheme 1. Label functions: ๐ 1 , โฆ , ๐ ๐ โ Garble ๐, ๐; ๐ โ 1 , โฆ , โ ๐ = ๐ 1 ๐ฆ , โฆ , ๐ ๐ ๐ฆ 2. Garblings: a.k.a. โlabelsโ ๐ โ โค ๐ ๐, ๐ฆ, โ 1 , โฆ , โ ๐ ๐: โค ๐ ๐ ๐ฆ โ โค ๐ Eval ๐, ๐ฆ, โ 1 , โฆ , โ ๐ = ๐๐ ๐ฆ Security (partial hiding). Sim ๐, ๐ฆ, ๐๐ ๐ฆ โ โ 1 , โฆ , โ ๐ not hidden 12 / 42
Arithmetic Key Garbling Scheme 1. Label functions: ๐ 1 , โฆ , ๐ ๐ โ Garble ๐, ๐; ๐ โ 1 , โฆ , โ ๐ = ๐ 1 ๐ฆ , โฆ , ๐ ๐ ๐ฆ 2. Garblings: ๐ โ โค ๐ ๐, ๐ฆ, โ 1 , โฆ , โ ๐ ๐: โค ๐ ๐ ๐ฆ โ โค ๐ Eval ๐, ๐ฆ, โ 1 , โฆ , โ ๐ = ๐๐ ๐ฆ Linearity. 1. ๐ 1 , โฆ , ๐ ๐ are linear in ๐ฆ : ๐ ๐ ๐ฆ = ๐ ๐ , ๐ฆ thanks to 2. coefficients of ๐ 1 , โฆ , ๐ ๐ are linear in ๐, ๐ partial hiding 3. Eval is linear in โ 1 , โฆ , โ ๐ 13 / 42
Inner-Product Functional Encryption Dec isk 2 โ KeyGen msk, ๐ 2 ๐, ๐ T ict 1 โ Enc msk, ๐ 1 Function-Hiding Property isk ๐ 1 isk ๐ 2 โฏ isk ๐ ๐ฝ Adaptive Security: ฮค isk ict can interleave. isk ๐ 1 ict ๐ 2 โฏ ict ๐ ๐พ โฒ โฒ โฒ isk ๐ 1 isk ๐ 2 โฏ isk ๐ ๐ฝ โ โฒ for all ๐, ๐ โฒ , ๐ ๐ if ๐ ๐ , ๐ ๐ = ๐ ๐ โฒ โฒ โฒ isk ๐ 1 ict ๐ 2 โฏ ict ๐ ๐พ 14 / 42
Pairing-Based IPFE [ALS16, LV16] Dec isk 2 โ KeyGen msk, ๐ 2 ๐, ๐ T ict 1 โ Enc msk, ๐ 1 = pairing Asymmetric Pairing Groups ๐ ๐ป 1 : ๐ 1 = ๐ 1 pairing ๐๐ โ ๐ป T ๐๐ T = ๐ T operation ๐ ๐ป 2 : ๐ 2 = ๐ 2 15 / 42
1-ABE via AKGS and IPFE ๐ 1 , โฆ , ๐ ๐ โ Garble ๐, ๐ sk ๐,๐ = isk ๐ ๐ labels in the exponent ๐โ ๐ IPFE โ ๐ = ๐ ๐ ๐ฆ Dec T ct ๐ฆ = ict ๐ฆ Eval linear Intuitions for Security. ๐๐ ๐ฆ T โข IPFE โน only โ ๐ โs are revealed โข AKGS โน only ๐๐ ๐ฆ is revealed 16 / 42
Selective Security of 1-ABE Real World Next step: hardwire labels in secret key ๐ฆ s.t. ๐ ๐ฆ = 0 want. ๐ is hidden sk ๐,๐ ๐ ๐ 0 { isk ( ) } ๐ 1 , โฆ , ๐ ๐ โ Garble ๐, ๐ โ ๐ = ๐ ๐ ๐ฆ ct ๐ฆ ๐ฆ 0 ict ( ) 17 / 42
Hardwire Labels in Secret Key via IPFE Next step: simulate labels ๐ฆ s.t. ๐ ๐ฆ = 0 want. ๐ is hidden sk ๐,๐ โ ๐ 0 { isk ( ) } ๐ 1 , โฆ , ๐ ๐ โ Garble ๐, ๐ โ ๐ = ๐ ๐ ๐ฆ ct ๐ฆ ๐ฆ 1 ict ( ) 18 / 42
Simulate Labels via AKGS ๐ฆ s.t. ๐ ๐ฆ = 0 want. ๐ is hidden sk ๐,๐ โ ๐ 0 { isk ( ) } โ 1 , โฆ , โ ๐ โ Sim ๐, ๐ฆ, ๐๐ ๐ฆ ct ๐ฆ ๐ฆ 1 ict ( ) 19 / 42
Adaptive Security? need ๐ฆ to simulate sk ๐,๐ โ ๐ 0 { isk ( ) } โ 1 , โฆ , โ ๐ โ Sim ๐, ๐ฆ, ๐๐ ๐ฆ ๐ฆ s.t. ๐ ๐ฆ = 0 ct ๐ฆ ๐ฆ 1 ict ( ) Idea. Rely on special structure of simulator. 20 / 42
Special Simulation Structure Real Garbling โ 1 , โฆ , โ ๐ are uniformly random subject to correctness: Eval ๐, ๐ฆ, โ 1 , โฆ , โ ๐ = ๐๐ ๐ฆ . linear constraint Simulator โบ independent of ๐ฆ 1. Draw โ 2 , โฆ , โ ๐ โ โค ๐ . 2. Find unique โ 1 s.t. evaluation is correct. โบ only one label depends on ๐ฆ 21 / 42
Simulation for Adaptive Security equation depends on ๐ฆ find โ 1 s.t. Eval ๐, ๐ฆ, โฆ = ๐๐ ๐ฆ sk ๐,๐ 0 โ 1 isk ( ) โ 2 โ โค ๐ 0 โ 2 isk ( ) โฎ โฎ โ ๐ โ โค ๐ โ ๐ 0 isk ( ) โฎ โฎ ๐ฆ s.t. ๐ ๐ฆ = 0 ct ๐ฆ ๐ฆ 1 ict ( ) Idea. Put โ 1 in ciphertext 22 / 42
Simulation for Adaptive Security sk ๐,๐ 0 1 0 isk ( ) โ 2 โ โค ๐ 0 0 โ 2 isk ( ) โฎ โฎ โ ๐ โ โค ๐ โ ๐ 0 0 isk ( ) โฎ โฎ ๐ฆ s.t. ๐ ๐ฆ = 0 find โ 1 s.t. Eval ๐, ๐ฆ, โฆ = 0 ct ๐ฆ ๐ฆ โ 1 1 ict ( ) 23 / 42
Real World vs. Simulation Real World Simulation sk ๐,๐ sk ๐,๐ isk ( ๐ 1 0 0 isk ( 0 1 0 ) ) ๐ > 1 {isk ( ๐ ๐ โ ๐ 0 0 ๐ > 1 {isk ( 0 0 )} )} ct ๐ฆ ict ( ๐ฆ 0 0 ct ๐ฆ ict ( ๐ฆ โ 1 1 ) ) need same labels to use IPFE ๐ 1 , โฆ , ๐ ๐ โ Garble ๐, ๐ โ 2 , โฆ , โ ๐ โ โค ๐ โ 1 , โฆ , โ ๐ = ๐ 1 ๐ฆ , โฆ , ๐ ๐ ๐ฆ find โ 1 s.t. Eval โฏ = ๐๐ ๐ฆ = 0 honestly generated labels simulated labels same distribution of labels 24 / 42
Bridging the Gap: Piecewise Security ๐ 1 , โฆ , ๐ ๐ โ Garble ๐, ๐ Labels are marginally random given subsequent label functions. for ๐ > 1 and all ๐ฆ : piecewise ๐ ๐ ๐ฆ , ๐ ๐+1 , โฆ , ๐ ๐ โก $, ๐ ๐+1 , โฆ , ๐ ๐ security โ 1 is uniquely determined by Eval โฏ = ๐๐ ๐ฆ . We show that AKGS for ABP [IW14] is piecewise secure. 25 / 42
Adaptive Security of 1-ABE Next step: hardwire โ 1 in ciphertext Real World sk ๐,๐ ๐ 1 0 0 0 isk ( ) isk ( ๐ 2 0 0 0 ) โฎ ๐ ๐ 0 0 0 isk ( ) โฎ ๐ฆ โ 1 = ๐ 1 ๐ฆ s.t. ๐ ๐ฆ = 0 ct ๐ฆ ๐ฆ 0 0 0 ict ( ) 26 / 42
Hardwire โ 1 in Ciphertext via IPFE Next step: find unique โ 1 from correctness equation sk ๐,๐ 0 1 0 0 isk ( ) isk ( ๐ 2 0 0 0 ) โฎ ๐ ๐ 0 0 0 isk ( ) โฎ ๐ฆ โ 1 = ๐ 1 ๐ฆ s.t. ๐ ๐ฆ = 0 ct ๐ฆ ๐ฆ โ 1 0 0 ict ( ) 27 / 42
Find Unique โ 1 via AKGS sk ๐,๐ 0 1 0 0 isk ( ) isk ( ๐ 2 0 0 0 ) โฎ ๐ ๐ 0 0 0 isk ( ) โฎ find โ 1 s.t. ๐ฆ s.t. ๐ ๐ฆ = 0 Eval โฏ = ๐๐ ๐ฆ ct ๐ฆ ๐ฆ โ 1 0 0 ict ( ) 28 / 42
Goal. Simulate โ 2 as Random Next step: hardwire โ 2 in ciphertext sk ๐,๐ 0 1 0 0 isk ( ) isk ( ๐ 2 0 0 0 ) โ 2 = ๐ 2 ๐ฆ โฎ ๐ ๐ 0 0 0 isk ( ) โฎ ๐ฆ find โ 1 s.t. s.t. ๐ ๐ฆ = 0 Eval โฏ = ๐๐ ๐ฆ = 0 ct ๐ฆ ๐ฆ โ 1 0 0 ict ( ) 29 / 42
Recommend
More recommend