compact adaptively secure abe from lin
play

Compact Adaptively Secure ABE from -Lin: Beyond NC 1 and Towards NL - PowerPoint PPT Presentation

Compact Adaptively Secure ABE from -Lin: Beyond NC 1 and Towards NL Huijia (Rachel) Lin and Ji Luo 1 / 42 Attribute-Based Encryption [SW05] Setup mpk, msk KeyGen msk, sk policy Compact: ct = sk Expressive:


  1. Compact Adaptively Secure ABE from ๐‘™ -Lin: Beyond NC 1 and Towards NL Huijia (Rachel) Lin and Ji Luo 1 / 42

  2. Attribute-Based Encryption [SW05] Setup โ†’ mpk, msk KeyGen msk, ๐‘” โ†’ sk policy Compact: ct = ๐‘ƒ ๐‘ฆ sk Expressive: ๐‘” โˆˆ powerful class of functions ๐‘ฆ, ct Enc mpk, ๐‘ฆ, ๐œˆ โ†’ ct Dec sk, ๐‘”, ct, ๐‘ฆ โ†’ ๐œˆ๐‘” ๐‘ฆ attribute message Correctness. Learn ๐œˆ if ๐‘” ๐‘ฆ โ‰  0 ( sk is authorized) 2 / 42

  3. Attribute-Based Encryption [SW05] Setup โ†’ mpk, msk KeyGen msk, ๐‘” ๐‘— โ†’ sk ๐‘— Collusion Resistance sk ๐‘— โ€™s Message is hidden given arbitrary number of unauthorized keys. ๐‘ฆ, ct Enc mpk, ๐‘ฆ, ๐œˆ โ†’ ct Security. Hide ๐œˆ if ๐‘” ๐‘— ๐‘ฆ = 0 for all ๐‘— ( sk ๐‘— โ€™s are unauthorized) 3 / 42

  4. Adaptive IND-CPA Security mpk ๐‘” ๐‘Ÿ sk ๐‘” ๐‘Ÿ Exp ๐‘ ๐‘ฆ, ๐œˆ 0 , ๐œˆ 1 ct โ† Enc ๐‘ฆ, ๐œˆ ๐‘ ๐‘” ๐‘Ÿ sk ๐‘” ๐‘Ÿ if for all queried keys ๐‘” ๐‘Ÿ ๐‘ฆ = 0 , then Exp 0 โ‰ˆ Exp 1 4 / 42

  5. (Weaker) Selective IND-CPA Security ๐‘ฆ, Adaptive mpk Security ๐‘” ๐‘Ÿ sk ๐‘” ๐‘Ÿ Exp ๐‘ ๐œˆ 0 , ๐œˆ 1 ct โ† Enc ๐‘ฆ, ๐œˆ ๐‘ ๐‘” ๐‘Ÿ sk ๐‘” ๐‘Ÿ if for all queried keys ๐‘” ๐‘Ÿ ๐‘ฆ = 0 , then Exp 0 โ‰ˆ Exp 1 5 / 42

  6. Challenging to have it all Compactness: ct = ๐‘ƒ ๐‘ฆ NC 1 and ABP Adaptive Security are non-uniform : Each sk works with Standard Assumptions attribute of fixed length. Goal. Have it ALL for expressive classes of policies. Previously, the largest class was ๐Ž๐ƒ ๐Ÿ [KW19]. Contribution 1. Extend to ABP . A rithmetic B ranching P rograms โŠ‡ NC 1 , arithmetic computation over โ„ค ๐‘ž . 6 / 42

  7. Challenging to have it all Compactness: ct = ๐‘ƒ ๐‘ฆ ABE for uniform Adaptive Security computation: Each sk works with Standard Assumptions attribute of any length. Contribution 2. DFA , NFA (regular languages) the first ABE for uniform computation with all above L , NL * (log-space Turing machines) * relaxed compactness 7 / 42

  8. Related Works: Non-Uniform Model NON-standard NOT compact NOT adaptive assumptions [LOSTW10] for MSP [GPSW06] for MSP [LW12] for MSP ๐‘Ÿ -type assumption [GVW13, BGGHNSVV14] for ฮค ๐‘„ poly all-in-one: compact, adaptive, standard assumptions [KW19] for NC 1 โŸธ ๐‘™ -Lin in pairing groups this work for ABP concurrent [GW20] for BP 8 / 42

  9. Related Works: Uniform Model NON-standard NOT compact or NOT adaptive or assumptions [Wat12, Att14, AMY19, GWW19] for DFA concurrent [GW20] for NFA all-in-one: compact, adaptive, standard assumptions this work for DFA, NFA concurrent [GW20] for DFA ๐‘™ -Lin beyond finite automata [AS16] for P (FE, based on iO) ct = ๐‘ƒ ๐‘ฆ ๐‘ˆ๐‘‡2 ๐‘‡ this work for L, NL (relaxed compactness) sk = ๐‘ƒ TM 9 / 42

  10. New General Framework computational tool information-theoretic tool I nner- P roduct A rithmetic K ey F unctional E ncryption G arbling S cheme special randomized encoding 1-key 1-ABE = 1-ciphertext secret-key ABE 10 / 42

  11. 1-ABE via AKGS and IPFE convenience โ€“ ๐œˆ in secret key Partially Hiding [IW14] AKGS sk ๐‘”,๐œˆ Randomized Encoding เทฃ ๐œˆ๐‘” ๐‘ฆ ๐œˆ๐‘” ๐‘ฆ ct ๐‘ฆ use ๐œˆ as one-time pad Secure: เทฃ ๐œˆ๐‘” ๐‘ฆ hides ๐œˆ beyond ๐œˆ๐‘” ๐‘ฆ . It does not hide ๐‘”, ๐‘ฆ . Simple: RE is linear in ๐‘ฆ . compute using IPFE โŸน 11 / 42

  12. Arithmetic Key Garbling Scheme 1. Label functions: ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› โ† Garble ๐‘”, ๐œˆ; ๐‘  โ„“ 1 , โ€ฆ , โ„“ ๐‘› = ๐‘€ 1 ๐‘ฆ , โ€ฆ , ๐‘€ ๐‘› ๐‘ฆ 2. Garblings: a.k.a. โ€œlabelsโ€ ๐‘œ โ†’ โ„ค ๐‘ž ๐‘”, ๐‘ฆ, โ„“ 1 , โ€ฆ , โ„“ ๐‘› ๐‘”: โ„ค ๐‘ž ๐‘œ ๐‘ฆ โˆˆ โ„ค ๐‘ž Eval ๐‘”, ๐‘ฆ, โ„“ 1 , โ€ฆ , โ„“ ๐‘› = ๐œˆ๐‘” ๐‘ฆ Security (partial hiding). Sim ๐‘”, ๐‘ฆ, ๐œˆ๐‘” ๐‘ฆ โ†’ โ„“ 1 , โ€ฆ , โ„“ ๐‘› not hidden 12 / 42

  13. Arithmetic Key Garbling Scheme 1. Label functions: ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› โ† Garble ๐‘”, ๐œˆ; ๐‘  โ„“ 1 , โ€ฆ , โ„“ ๐‘› = ๐‘€ 1 ๐‘ฆ , โ€ฆ , ๐‘€ ๐‘› ๐‘ฆ 2. Garblings: ๐‘œ โ†’ โ„ค ๐‘ž ๐‘”, ๐‘ฆ, โ„“ 1 , โ€ฆ , โ„“ ๐‘› ๐‘”: โ„ค ๐‘ž ๐‘œ ๐‘ฆ โˆˆ โ„ค ๐‘ž Eval ๐‘”, ๐‘ฆ, โ„“ 1 , โ€ฆ , โ„“ ๐‘› = ๐œˆ๐‘” ๐‘ฆ Linearity. 1. ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› are linear in ๐‘ฆ : ๐‘€ ๐‘˜ ๐‘ฆ = ๐‘€ ๐‘˜ , ๐‘ฆ thanks to 2. coefficients of ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› are linear in ๐œˆ, ๐‘  partial hiding 3. Eval is linear in โ„“ 1 , โ€ฆ , โ„“ ๐‘› 13 / 42

  14. Inner-Product Functional Encryption Dec isk 2 โ† KeyGen msk, ๐’˜ 2 ๐’—, ๐’˜ T ict 1 โ† Enc msk, ๐’— 1 Function-Hiding Property isk ๐’˜ 1 isk ๐’˜ 2 โ‹ฏ isk ๐’˜ ๐ฝ Adaptive Security: ฮค isk ict can interleave. isk ๐’— 1 ict ๐’— 2 โ‹ฏ ict ๐’— ๐พ โ€ฒ โ€ฒ โ€ฒ isk ๐’˜ 1 isk ๐’˜ 2 โ‹ฏ isk ๐’˜ ๐ฝ โ‰ˆ โ€ฒ for all ๐‘—, ๐‘˜ โ€ฒ , ๐’˜ ๐‘˜ if ๐’— ๐‘— , ๐’˜ ๐‘˜ = ๐’— ๐‘— โ€ฒ โ€ฒ โ€ฒ isk ๐’— 1 ict ๐’— 2 โ‹ฏ ict ๐’— ๐พ 14 / 42

  15. Pairing-Based IPFE [ALS16, LV16] Dec isk 2 โ† KeyGen msk, ๐’˜ 2 ๐’—, ๐’˜ T ict 1 โ† Enc msk, ๐’— 1 = pairing Asymmetric Pairing Groups ๐‘ ๐ป 1 : ๐‘ 1 = ๐‘• 1 pairing ๐‘๐‘ โˆˆ ๐ป T ๐‘๐‘ T = ๐‘• T operation ๐‘ ๐ป 2 : ๐‘ 2 = ๐‘• 2 15 / 42

  16. 1-ABE via AKGS and IPFE ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› โ† Garble ๐‘”, ๐œˆ sk ๐‘”,๐œˆ = isk ๐‘€ ๐‘˜ labels in the exponent ๐‘˜โˆˆ ๐‘› IPFE โ„“ ๐‘˜ = ๐‘€ ๐‘˜ ๐‘ฆ Dec T ct ๐‘ฆ = ict ๐‘ฆ Eval linear Intuitions for Security. ๐œˆ๐‘” ๐‘ฆ T โ€ข IPFE โŸน only โ„“ ๐‘˜ โ€™s are revealed โ€ข AKGS โŸน only ๐œˆ๐‘” ๐‘ฆ is revealed 16 / 42

  17. Selective Security of 1-ABE Real World Next step: hardwire labels in secret key ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 want. ๐œˆ is hidden sk ๐‘”,๐œˆ ๐‘€ ๐‘˜ 0 { isk ( ) } ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› โ† Garble ๐‘”, ๐œˆ โ„“ ๐‘˜ = ๐‘€ ๐‘˜ ๐‘ฆ ct ๐‘ฆ ๐‘ฆ 0 ict ( ) 17 / 42

  18. Hardwire Labels in Secret Key via IPFE Next step: simulate labels ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 want. ๐œˆ is hidden sk ๐‘”,๐œˆ โ„“ ๐‘˜ 0 { isk ( ) } ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› โ† Garble ๐‘”, ๐œˆ โ„“ ๐‘˜ = ๐‘€ ๐‘˜ ๐‘ฆ ct ๐‘ฆ ๐‘ฆ 1 ict ( ) 18 / 42

  19. Simulate Labels via AKGS ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 want. ๐œˆ is hidden sk ๐‘”,๐œˆ โ„“ ๐‘˜ 0 { isk ( ) } โ„“ 1 , โ€ฆ , โ„“ ๐‘› โ† Sim ๐‘”, ๐‘ฆ, ๐œˆ๐‘” ๐‘ฆ ct ๐‘ฆ ๐‘ฆ 1 ict ( ) 19 / 42

  20. Adaptive Security? need ๐‘ฆ to simulate sk ๐‘”,๐œˆ โ„“ ๐‘˜ 0 { isk ( ) } โ„“ 1 , โ€ฆ , โ„“ ๐‘› โ† Sim ๐‘”, ๐‘ฆ, ๐œˆ๐‘” ๐‘ฆ ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 ct ๐‘ฆ ๐‘ฆ 1 ict ( ) Idea. Rely on special structure of simulator. 20 / 42

  21. Special Simulation Structure Real Garbling โ„“ 1 , โ€ฆ , โ„“ ๐‘› are uniformly random subject to correctness: Eval ๐‘”, ๐‘ฆ, โ„“ 1 , โ€ฆ , โ„“ ๐‘› = ๐œˆ๐‘” ๐‘ฆ . linear constraint Simulator โ˜บ independent of ๐‘ฆ 1. Draw โ„“ 2 , โ€ฆ , โ„“ ๐‘› โ† โ„ค ๐‘ž . 2. Find unique โ„“ 1 s.t. evaluation is correct. โ˜บ only one label depends on ๐‘ฆ 21 / 42

  22. Simulation for Adaptive Security equation depends on ๐‘ฆ find โ„“ 1 s.t. Eval ๐‘”, ๐‘ฆ, โ€ฆ = ๐œˆ๐‘” ๐‘ฆ sk ๐‘”,๐œˆ 0 โ„“ 1 isk ( ) โ„“ 2 โ† โ„ค ๐‘ž 0 โ„“ 2 isk ( ) โ‹ฎ โ‹ฎ โ„“ ๐‘˜ โ† โ„ค ๐‘ž โ„“ ๐‘˜ 0 isk ( ) โ‹ฎ โ‹ฎ ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 ct ๐‘ฆ ๐‘ฆ 1 ict ( ) Idea. Put โ„“ 1 in ciphertext 22 / 42

  23. Simulation for Adaptive Security sk ๐‘”,๐œˆ 0 1 0 isk ( ) โ„“ 2 โ† โ„ค ๐‘ž 0 0 โ„“ 2 isk ( ) โ‹ฎ โ‹ฎ โ„“ ๐‘˜ โ† โ„ค ๐‘ž โ„“ ๐‘˜ 0 0 isk ( ) โ‹ฎ โ‹ฎ ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 find โ„“ 1 s.t. Eval ๐‘”, ๐‘ฆ, โ€ฆ = 0 ct ๐‘ฆ ๐‘ฆ โ„“ 1 1 ict ( ) 23 / 42

  24. Real World vs. Simulation Real World Simulation sk ๐‘”,๐œˆ sk ๐‘”,๐œˆ isk ( ๐‘€ 1 0 0 isk ( 0 1 0 ) ) ๐‘˜ > 1 {isk ( ๐‘€ ๐‘˜ โ„“ ๐‘˜ 0 0 ๐‘˜ > 1 {isk ( 0 0 )} )} ct ๐‘ฆ ict ( ๐‘ฆ 0 0 ct ๐‘ฆ ict ( ๐‘ฆ โ„“ 1 1 ) ) need same labels to use IPFE ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› โ† Garble ๐‘”, ๐œˆ โ„“ 2 , โ€ฆ , โ„“ ๐‘› โ† โ„ค ๐‘ž โ„“ 1 , โ€ฆ , โ„“ ๐‘› = ๐‘€ 1 ๐‘ฆ , โ€ฆ , ๐‘€ ๐‘› ๐‘ฆ find โ„“ 1 s.t. Eval โ‹ฏ = ๐œˆ๐‘” ๐‘ฆ = 0 honestly generated labels simulated labels same distribution of labels 24 / 42

  25. Bridging the Gap: Piecewise Security ๐‘€ 1 , โ€ฆ , ๐‘€ ๐‘› โ† Garble ๐‘”, ๐œˆ Labels are marginally random given subsequent label functions. for ๐‘˜ > 1 and all ๐‘ฆ : piecewise ๐‘€ ๐‘˜ ๐‘ฆ , ๐‘€ ๐‘˜+1 , โ€ฆ , ๐‘€ ๐‘› โ‰ก $, ๐‘€ ๐‘˜+1 , โ€ฆ , ๐‘€ ๐‘› security โ„“ 1 is uniquely determined by Eval โ‹ฏ = ๐œˆ๐‘” ๐‘ฆ . We show that AKGS for ABP [IW14] is piecewise secure. 25 / 42

  26. Adaptive Security of 1-ABE Next step: hardwire โ„“ 1 in ciphertext Real World sk ๐‘”,๐œˆ ๐‘€ 1 0 0 0 isk ( ) isk ( ๐‘€ 2 0 0 0 ) โ‹ฎ ๐‘€ ๐‘˜ 0 0 0 isk ( ) โ‹ฎ ๐‘ฆ โ„“ 1 = ๐‘€ 1 ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 ct ๐‘ฆ ๐‘ฆ 0 0 0 ict ( ) 26 / 42

  27. Hardwire โ„“ 1 in Ciphertext via IPFE Next step: find unique โ„“ 1 from correctness equation sk ๐‘”,๐œˆ 0 1 0 0 isk ( ) isk ( ๐‘€ 2 0 0 0 ) โ‹ฎ ๐‘€ ๐‘˜ 0 0 0 isk ( ) โ‹ฎ ๐‘ฆ โ„“ 1 = ๐‘€ 1 ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 ct ๐‘ฆ ๐‘ฆ โ„“ 1 0 0 ict ( ) 27 / 42

  28. Find Unique โ„“ 1 via AKGS sk ๐‘”,๐œˆ 0 1 0 0 isk ( ) isk ( ๐‘€ 2 0 0 0 ) โ‹ฎ ๐‘€ ๐‘˜ 0 0 0 isk ( ) โ‹ฎ find โ„“ 1 s.t. ๐‘ฆ s.t. ๐‘” ๐‘ฆ = 0 Eval โ‹ฏ = ๐œˆ๐‘” ๐‘ฆ ct ๐‘ฆ ๐‘ฆ โ„“ 1 0 0 ict ( ) 28 / 42

  29. Goal. Simulate โ„“ 2 as Random Next step: hardwire โ„“ 2 in ciphertext sk ๐‘”,๐œˆ 0 1 0 0 isk ( ) isk ( ๐‘€ 2 0 0 0 ) โ„“ 2 = ๐‘€ 2 ๐‘ฆ โ‹ฎ ๐‘€ ๐‘˜ 0 0 0 isk ( ) โ‹ฎ ๐‘ฆ find โ„“ 1 s.t. s.t. ๐‘” ๐‘ฆ = 0 Eval โ‹ฏ = ๐œˆ๐‘” ๐‘ฆ = 0 ct ๐‘ฆ ๐‘ฆ โ„“ 1 0 0 ict ( ) 29 / 42

Recommend


More recommend