combinatorial lines
play

Combinatorial lines Nina Kam ev , joint work with David Conlon and - PowerPoint PPT Presentation

Combinatorial lines Nina Kam ev , joint work with David Conlon and Christoph with few intervals Spiegel The Hales-Jewett Theorem N OTATION E XAMPLE : a combinatorial line in 3 12 Ground set , usually 3 = 22 32


  1. Combinatorial lines Nina Kam ฤev , joint work with David Conlon and Christoph with few intervals Spiegel

  2. The Hales-Jewett Theorem N OTATION E XAMPLE : a combinatorial line in 3 12 โ€ข Ground set ๐‘› ๐‘œ , usually 3 ๐‘œ ๐‘ฃ = 22 โˆ— 32 โˆ— 12 โˆ—โˆ—โˆ— 22 Wildcard โ€ข A root is a word ๐‘ฅ of length ๐‘œ ๐‘ฃ 1 = 22๐Ÿ32๐Ÿ12๐Ÿ๐Ÿ๐Ÿ22 set ๐‘ฃ 2 = 22๐Ÿ‘32๐Ÿ‘12๐Ÿ‘๐Ÿ‘๐Ÿ‘22 in the symbols [๐‘›] โˆช โˆ— with ๐‘ฃ 3 = 22๐Ÿ’32๐Ÿ’12๐Ÿ’๐Ÿ’๐Ÿ’22 at least one โˆ— . โ€ข For ๐‘— โˆˆ [๐‘›] , ๐‘ฅ ๐‘— is the word Theorem (Hales, Jewett, โ€˜63). Given obtained from ๐‘ฅ by replacing ๐‘›, ๐‘  โˆˆ โ„• , there is a natural number ๐‘œ each โˆ— by ๐‘— . such that any ๐‘  -colouring of [๐‘›] ๐‘œ โ€ข A ( combinatorial ) line is a set contains a monochromatic of words ๐‘ฅ ๐‘— : ๐‘— ๐œ—[๐‘›] . combinatorial line. A line in 4 3 with โ€ข ๐ผ๐พ ๐‘›, ๐‘  is the minimal ๐‘œ for which the wildcard set {1,2,3} conclusion holds

  3. A warm- upโ€ฆ Claim. ๐ผ๐พ 2, ๐‘  = ๐‘ . Proof. Let ๐‘‘: [2] ๐‘  โ†’ โ„ค ๐‘  .

  4. A warm- upโ€ฆ Claim. ๐ผ๐พ 2, ๐‘  = ๐‘ . Proof. Let ๐‘‘: [2] ๐‘  โ†’ โ„ค ๐‘  . Consider the words 1111111 โ€ฆ 1 11 โ€ฆ 111 โ€ฆ 2 11 โ€ฆ 122 โ€ฆ 2 โ‹ฎ 1222222 โ€ฆ 2 2222222 โ€ฆ 2 . Among ๐‘  + 1 words, two have the same colour โ‡’ monochromatic line.

  5. Shelahโ€™s proof of HJT Consequences 2 โ€ข ๐ผ๐พ(๐‘›, ๐‘ ) โ‰ค 2 2 โ‹ฐ 2๐ผ๐พ(๐‘› โˆ’ 1, ๐‘ ) times โ€ข For ๐‘› = 3 , there exists an ๐‘  - interval line (a line whose wildcard set consists of at most ๐‘  intervals), e.g. ๐‘ฃ = 33 โˆ—2โˆ—21 โˆ—โˆ—โˆ— 33 โ‰ค ๐‘  intervals Is this the best possible?

  6. Lines with few intervals Definition. โ„ ๐‘›, ๐‘  = min { ๐‘Ÿ : for large ๐‘œ , any ๐‘  -colouring of [๐‘›] ๐‘œ contains a monochromatic ๐‘Ÿ -interval line}. 7 Observations. โ„(3, ๐‘ ) 6 โ€ข โ„ 2, ๐‘  = 1 for all ๐‘  . 5 โ€ข โ„ 3, ๐‘  โ‰ค ๐‘ , generally โ„ ๐‘›, ๐‘  โ‰ค ๐ผ๐พ(๐‘› โˆ’ 1, ๐‘ ) 4 3 Theorem. 2 (i) โ„ 3, ๐‘  = ๐‘  for odd ๐‘  (Conlon, K) 1 โ„ 3, 2 = 1 (ii) (Leader, Rรคty) 1 3 5 7 ๐‘  (iii) โ„ 3 ๐‘  = ๐‘  โˆ’ 1 for even ๐‘  (K, Spiegel).

  7. (i) The colouring avoiding ๐‘  โˆ’ 1 -interval lines

  8. (i) The colouring avoiding ๐‘  โˆ’ 1 -interval lines ๐‘‘๐‘๐‘œ๐‘ข๐‘ ๐‘๐‘‘๐‘ข ๐‘‘๐‘๐‘ฃ๐‘œ๐‘ข [3] ๐‘œ [3] โ‰ค๐‘œ 3 โ„ค ๐‘  ๐‘ฃ 1 = 2213211211122 โŸผ ๐‘ฃ 1 = 2132 1212 โŸผ ๐œ’ ๐‘ฃ 1 = 3, 4, 1 ๐‘ฃ 2 = 2223221222222 โŸผ ๐‘ฃ 2 = 2 32 12 โŸผ ๐œ’ ๐‘ฃ 2 = (1, 3, 1) ๐‘ฃ 3 = 2233231233322 โŸผ ๐‘ฃ 3 = 2 3231232 โŸผ ๐œ’ ๐‘ฃ 3 = (1, 4, 3)

  9. (i) The colouring avoiding ๐‘  โˆ’ 1 -interval lines ๐‘‘๐‘๐‘œ๐‘ข๐‘ ๐‘๐‘‘๐‘ข ๐‘‘๐‘๐‘ฃ๐‘œ๐‘ข [3] ๐‘œ [3] โ‰ค๐‘œ 3 โ„ค ๐‘  ๐‘ฃ 1 = 22๐Ÿ32๐Ÿ12๐Ÿ๐Ÿ๐Ÿ22 โŸผ ๐‘ฃ 1 = 2๐Ÿ32 12๐Ÿ2 โŸผ ๐œ’ ๐‘ฃ 1 = 3, 4, 1 ๐‘ฃ 2 = 22๐Ÿ‘32๐Ÿ‘12๐Ÿ‘๐Ÿ‘๐Ÿ‘22 โŸผ ๐‘ฃ 2 = 2 32 12 โŸผ ๐œ’ ๐‘ฃ 2 = (1, 3, 1) ๐‘ฃ 3 = 22๐Ÿ’32๐Ÿ’12๐Ÿ’๐Ÿ’๐Ÿ’22 โŸผ ๐‘ฃ 3 = 2 32๐Ÿ’12๐Ÿ’2 โŸผ ๐œ’ ๐‘ฃ 3 = (1, 4, 3) ๐‘ฃ = 22 โˆ— 32 โˆ— 12 โˆ—โˆ—โˆ— 22 โŸผ เดฅ ๐‘ฃ = 2 โˆ— 32 โˆ— 12 โˆ— 2 โŸผ ๐œ’ เดฅ ๐‘ฃ = (1, 4, 1) ๐œ’ ๐‘ฃ 3 โˆ™ (2, 2, โˆ’1) ๐œ’ เดฅ ๐‘ฃ ๐œ’ ๐‘ฃ 1 โ„ค ๐‘  ๐œ’ ๐‘ฃ 2 3 โ„ค ๐‘ 

  10. (iii) The upper bound Theorem (K, Spiegel). โ„ 3, ๐‘  = ๐‘  โˆ’ 1 for even ๐‘  . โ€ข Idea: reduce the problem to the โ€˜linearโ€™ colourings Proposition. For any ๐‘  , if โ„ 3 ๐‘  > ๐‘  โˆ’ 1 , then there is a colouring ๐‘ˆ: [3] ๐‘œ โ†’ โ„ค ๐‘  avoiding ๐‘  โˆ’ 1 -interval lines with ๐‘ˆ ๐‘ฃ = ๐‘ˆโ€ฒ ๐œ’ เดค ๐‘ฃ for all ๐‘ฃ . That is, ๐‘ˆ has the form ๐‘ˆ โ€ฒ เดฅ ๐œ’ [3] ๐‘œ [3] โ‰ค๐‘œ 3 3 โ„ค ๐‘  โ„ค ๐‘  โ€ข Odd ๐‘  โ€“ there is a colouring โ€ข Even ๐‘  โ€“ contradiction.

  11. Onwards and upwards Improve the bounds ๐‘  โ‰ค โ„ ๐‘›, ๐‘  โ‰ค ๐ผ๐พ ๐‘› โˆ’ 1, ๐‘  . New proofs of the Hales-Jewett theorem?

Recommend


More recommend