Ronen Weiss and Nir Barnea Collaborators: O. Hen, E. Piasetzki and R. Torres
๏ฝ Zero-range condition: ๐ 0 โช ๐, ๐ ๏ฝ Many quantities are connected to the conta tact ct ๐ซ : ๐ ๐ = ๐ซ/๐^4 for ๐ โ โ โ 2 ๐ 3 ๐ โ 2 ๐ 2 ๐ ๐ ๐ โ ๐ซ ๐ + ๐ = 4๐๐๐ ๐ซ + เท 2๐ 3 ๐ 4 2๐ ๐ And many moreโฆ S. Tan, Ann. Phys. (N.Y.) 323, 2952 (2008); Ann. Phys. (N.Y.) 323, 2971 (2008); Ann. Phys. (N.Y.) 323, 2987 (2008)
๏ฝ The basic fa factoriz ization tion assumption: 1 โ 1 ๐ ๐๐ โ0 ๐ ร ๐ต ๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ๐ ๐ ๐๐ ๐ ๐ = 1 ๐ 4 ร ๐ซ
๏ฝ The basic fa factoriz ization tion assumption: 1 โ 1 ๐ ๐๐ โ0 ๐ ร ๐ต ๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ๐ ๐ ๐๐ ๐ ๐ = 1 ๐ 4 ร ๐ซ NOT FOR NUCLEAR PHYSICS ๐ 0 โช ๐, ๐
1 โ 1 ๐ ๐๐ โ0 ๐ ร ๐ต ๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ๐ ๐ ๐๐ ๐ ๐๐ โ0 ๐ ๐ ๐๐ ๐ ร ๐ต ๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ๐๐
1 โ 1 ๐ ๐๐ โ0 ๐ ร ๐ต ๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ๐ ๐ ๐๐ ๐ ๐๐ โ0 ๐ ๐ ๐๐ ๐ ร ๐ต ๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ๐๐ ๐ ๐๐โ0 เท ๐ฝ ๐ ๐๐ ร ๐ต ๐๐ ๐ฝ (๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ) ๐ ๐ ๐๐ ๐ฝ The pair kind Channels ๐ฝ โ univ nivers ersal al โ ๐๐ โ {๐๐, ๐๐, ๐๐} = (โ 2 ๐ 2 )๐ 2 ๐ 2 function
One-body body moment entum um distribut ibution ion - ๐ ๐ถ (๐) โ The probability to find a proton/neutron with momentum ๐ Two-bod ody y momentum entum distr tribut bution ion - ๐ฎ ๐ถ๐ถ (๐) โ The probability to find an NN pairs with relative momentum k
One-body body moment entum um distribut ibution ion - ๐ ๐ถ (๐) โ The probability to find a proton/neutron with momentum ๐ Two-bod ody y momentum entum distr tribut bution ion - ๐ฎ ๐ถ๐ถ (๐) โ The probability to find an NN pairs with relative momentum k ๐ ๐๐โ0 เท ๐ฝ ๐ ๐๐ ร ๐ต ๐๐ ๐ฝ (๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ) ๐ ๐ ๐๐ ๐ฝ kโโ ฯ ๐ฝ,๐พ เทค ๐ฝ๐พ ๐ฝ๐พ ๐ฝ โ ๐ เทค ๐ฝ โ ๐ เทค 2๐ท ๐๐ ๐ท ๐๐ ๐พ ๐พ ๐ ๐ ๐ ๐ ๐๐ ๐ ๐๐ ๐ 16๐ 2 + เทค ๐ ๐๐ ๐ ๐๐ ๐ 16๐ 2
One-body body moment entum um distribut ibution ion - ๐ ๐ถ (๐) โ The probability to find a proton/neutron with momentum ๐ Two-bod ody y momentum entum distr tribut bution ion - ๐ฎ ๐ถ๐ถ (๐) โ The probability to find an NN pairs with relative momentum k ๐ ๐๐โ0 เท ๐ฝ ๐ ๐๐ ร ๐ต ๐๐ ๐ฝ (๐บ ๐๐ , ๐ ๐ ๐โ ๐,๐ ) ๐ ๐ ๐๐ ๐ฝ kโโ ฯ ๐ฝ,๐พ เทค ๐ฝ๐พ ๐ฝ๐พ ๐ฝ โ ๐ เทค ๐ฝ โ ๐ เทค 2๐ท ๐๐ ๐ท ๐๐ ๐พ ๐พ ๐ ๐ ๐ ๐ ๐๐ ๐ ๐๐ ๐ 16๐ 2 + เทค ๐ ๐๐ ๐ ๐๐ ๐ 16๐ 2 ๐ฝ๐พ ๐ท ๐๐ kโโ เท ๐ฝ โ ๐ เทค ๐พ ๐ ๐บ ๐๐ ๐ ๐ ๐๐ เทค ๐ ๐๐ 16๐ 2 ๐ฝ,๐พ
๏ฝ As a result we get the asymptotic relation: ๐ ๐ ๐ โ ๐บ ๐๐ ๐ + 2๐บ ๐๐ (๐)
๏ฝ As a result we get the asymptotic relation: ๐ ๐ ๐ โ ๐บ ๐๐ ๐ + 2๐บ ๐๐ (๐) Using the variational Monte Carlo data (VMC) Wiringa et al. Phys. Rev. C 89, 024305 (2014)
๏ฝ Assuming only two wo signi gnifi fican ant channels nnels: The deuteron eron channel โ L=0,2; S=1; J=1; T=0 The pure e s-wave channel โ L=0; S=0; J=0; T=1 ๏ฝ We get: 2 + ๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ 0 ๐ ๐๐ 0 2 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐
๏ฝ Assuming only two wo signi gnifi fican ant channels nnels: The deuteron eron channel โ L=0,2; S=1; J=1; T=0 The pure e s-wave channel โ L=0; S=0; J=0; T=1 ๏ฝ We get: 2 + ๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ 0 ๐ ๐๐ 0 2 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐ Zero-energy The VMC solution of the data two-body system (AV18)
2 + ๐ท ๐๐ ๐ ๐ ๐๐ 0 ๐ ๐๐ 2 ๐ 0 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ 0 ๐ ๐๐ 0 2 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐ Momentum space 10 B
2 + ๐ท ๐๐ ๐ ๐ ๐๐ 0 ๐ ๐๐ 2 ๐ 0 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ 0 ๐ ๐๐ 0 2 ๐บ ๐๐ ๐ ๐โโ ๐ท ๐๐ ๐ Momentum space Coordinate space 10 B 10 B
2 + ๐ท ๐๐ 2 + 2๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 0 ๐ ๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ ๐ Universal functions - Calculated for the two-body system
2 + ๐ท ๐๐ 2 + 2๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 0 ๐ ๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ ๐ Fitted to ๐บ ๐๐ (๐) for ๐ > 4 fm โ1
2 + ๐ท ๐๐ 2 + 2๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 0 ๐ ๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ ๐ The VMC data
2 + ๐ท ๐๐ 2 + 2๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 0 ๐ ๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ ๐ ๐ ๐ (๐) 4 He
2 + ๐ท ๐๐ 2 + 2๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 0 ๐ ๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ ๐ ๐ ๐ (๐) ๐๐/๐๐ 4 He 4 He
2 + ๐ท ๐๐ 2 + 2๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 0 ๐ ๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ ๐ ๐ ๐ (๐) ๐๐/๐๐ 12 C 12 C
2 + ๐ท ๐๐ 2 + 2๐ท ๐๐ 2 ๐ ๐ ๐๐ 0 ๐ ๐๐ 0 ๐ ๐๐ ๐ 0 0 ๐ ๐ ๐ ๐โโ ๐ท ๐๐ ๐ ๐ ๐ โ ๐ ๐๐ ๐ฝ 2 ๐ 3 ๐ = 1 Normalization: ืฌ ๐ ๐บ โ %๐๐๐ท โก 1 ๐ ๐ ๐ ๐ 3 ๐ = 1 ๐ + ๐ท ๐๐ 0 + 2๐ท ๐๐ 0 ๐ เถฑ ๐ ๐ท ๐๐ ๐ฟ ๐บ
4 He Total number of pairs: pp โ 1 np-4
4 He Total number of pairs: pp โ 1 np-4 ๐ /๐ (%) ๐ /๐ (%) ๐ /๐ (%) ๐ซ ๐๐ ๐ซ ๐๐ ๐ซ ๐๐ k-space ๐. ๐๐ ยฑ ๐. ๐๐ ๐. ๐๐ ยฑ ๐. ๐๐ ๐๐. ๐ ยฑ ๐. ๐ Non-combinatorial Neutron-proton isospin symmetry dominance (T=1)
4 He Total number of pairs: pp โ 1 np-4 ๐ /๐ (%) ๐ /๐ (%) ๐ /๐ (%) %SRCs ๐ซ ๐๐ ๐ซ ๐๐ ๐ซ ๐๐ k-space 14.3 % 0.65 ยฑ 0.03 0.69 ยฑ 0.03 12.3 ยฑ 0.1
4 He Total number of pairs: pp โ 1 np-4 ๐ /๐ (%) ๐ /๐ (%) ๐ /๐ (%) %SRCs ๐ซ ๐๐ ๐ซ ๐๐ ๐ซ ๐๐ k-space 14.3 % 0.65 ยฑ 0.03 0.69 ยฑ 0.03 12.3 ยฑ 0.1 r-space 13.3% 0.567 ยฑ 0.004 11.61 ยฑ 0.03 Similar results are obtained for all the available nuclei in the VMC data
๏ฝ Moment entum um distribut ibutions ions R. Weiss, B. Bazak, N. Barnea, PRC 92 92, 054311 (2015) M. Alvioli, CC. Degli Atti, H. Morita, PRC 94 94, 044309 (2016) ๏ฝ The e Levin vinger er constant tant R. Weiss, B. Bazak, N. Barnea, PRL 114 114, 012501 (2015) R. Weiss, B. Bazak, N. Barnea, EPJA 52 52, 92 (2016) ๏ฝ Elect ctron ron scatt ttering ering O. Hen et al., PRC 92 92, 045205 (2015) ๏ฝ Symme mmetry try energ rgy BJ. Cai, BA. Li, PRC 93 93, 014619 (2016) ๏ฝ The e Coulomb lomb sum rule le (and nd a review) iew) R. Weiss, E. Pazy, N. Barnea, Few-Body Systems (2016) ๏ฝ The e EMC effect t JW. Chen, W. Detmold, J. E. Lynn, A. Schwenk, arxiv 1607.03065 [hep-ph] (2016) and moreโฆ
Two-body Two-body momentum coordinate distribution for density for ๐ > ๐ ๐ ๐ง โ๐ ๐ < ๐ ๐ ๐ง Extracting the contacts Full details on SRCs for ๐ > ๐ ๐ฎ
Two-body Two-body momentum coordinate distribution for density for ๐ > ๐ ๐ ๐ง โ๐ ๐ < ๐ ๐ ๐ง np dominance & pp/np Extracting the contacts Isospin symmetry %SRCs Main (๐, ๐, ๐พ, ๐) Full details channels on SRCs for ๐ > ๐ ๐ฎ 1B momentum distribution
Recommend
More recommend