collaborators o hen e piasetzki and r torres zero range
play

Collaborators: O. Hen, E. Piasetzki and R. Torres Zero-range - PowerPoint PPT Presentation

Ronen Weiss and Nir Barnea Collaborators: O. Hen, E. Piasetzki and R. Torres Zero-range condition: 0 , Many quantities are connected to the conta tact ct : = /^4 for 2 3


  1. Ronen Weiss and Nir Barnea Collaborators: O. Hen, E. Piasetzki and R. Torres

  2. ๏ฝ Zero-range condition: ๐‘  0 โ‰ช ๐‘, ๐‘’ ๏ฝ Many quantities are connected to the conta tact ct ๐‘ซ : ๐‘œ ๐‘™ = ๐‘ซ/๐‘™^4 for ๐‘™ โ†’ โˆž โ„ 2 ๐‘’ 3 ๐‘™ โ„ 2 ๐‘™ 2 ๐‘œ ๐œ ๐’ โˆ’ ๐‘ซ ๐‘ˆ + ๐‘‰ = 4๐œŒ๐‘›๐‘ ๐‘ซ + เท 2๐œŒ 3 ๐‘™ 4 2๐‘› ๐œ And many moreโ€ฆ S. Tan, Ann. Phys. (N.Y.) 323, 2952 (2008); Ann. Phys. (N.Y.) 323, 2971 (2008); Ann. Phys. (N.Y.) 323, 2987 (2008)

  3. ๏ฝ The basic fa factoriz ization tion assumption: 1 โˆ’ 1 ๐‘  ๐‘—๐‘˜ โ†’0 ๐œ” ร— ๐ต ๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ๐‘  ๐‘ ๐‘—๐‘˜ ๐‘œ ๐‘™ = 1 ๐‘™ 4 ร— ๐‘ซ

  4. ๏ฝ The basic fa factoriz ization tion assumption: 1 โˆ’ 1 ๐‘  ๐‘—๐‘˜ โ†’0 ๐œ” ร— ๐ต ๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ๐‘  ๐‘ ๐‘—๐‘˜ ๐‘œ ๐‘™ = 1 ๐‘™ 4 ร— ๐‘ซ NOT FOR NUCLEAR PHYSICS ๐‘  0 โ‰ช ๐‘’, ๐‘

  5. 1 โˆ’ 1 ๐‘  ๐‘—๐‘˜ โ†’0 ๐œ” ร— ๐ต ๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ๐‘  ๐‘ ๐‘—๐‘˜ ๐‘  ๐‘—๐‘˜ โ†’0 ๐œ” ๐œ’ ๐‘—๐‘˜ ๐‘  ร— ๐ต ๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ๐‘—๐‘˜

  6. 1 โˆ’ 1 ๐‘  ๐‘—๐‘˜ โ†’0 ๐œ” ร— ๐ต ๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ๐‘  ๐‘ ๐‘—๐‘˜ ๐‘  ๐‘—๐‘˜ โ†’0 ๐œ” ๐œ’ ๐‘—๐‘˜ ๐‘  ร— ๐ต ๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ๐‘—๐‘˜ ๐‘  ๐‘—๐‘˜โ†’0 เท ๐›ฝ ๐’” ๐‘—๐‘˜ ร— ๐ต ๐‘—๐‘˜ ๐›ฝ (๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ) ๐œ” ๐œ’ ๐‘—๐‘˜ ๐›ฝ The pair kind Channels ๐›ฝ โ€œ univ nivers ersal al โ€œ ๐‘—๐‘˜ โˆˆ {๐‘ž๐‘ž, ๐‘œ๐‘œ, ๐‘ž๐‘œ} = (โ„“ 2 ๐‘‡ 2 )๐‘˜ 2 ๐‘› 2 function

  7. One-body body moment entum um distribut ibution ion - ๐’ ๐‘ถ (๐’) โ€“ The probability to find a proton/neutron with momentum ๐‘™ Two-bod ody y momentum entum distr tribut bution ion - ๐‘ฎ ๐‘ถ๐‘ถ (๐’) โ€“ The probability to find an NN pairs with relative momentum k

  8. One-body body moment entum um distribut ibution ion - ๐’ ๐‘ถ (๐’) โ€“ The probability to find a proton/neutron with momentum ๐‘™ Two-bod ody y momentum entum distr tribut bution ion - ๐‘ฎ ๐‘ถ๐‘ถ (๐’) โ€“ The probability to find an NN pairs with relative momentum k ๐‘  ๐‘—๐‘˜โ†’0 เท ๐›ฝ ๐’” ๐‘—๐‘˜ ร— ๐ต ๐‘—๐‘˜ ๐›ฝ (๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ) ๐œ” ๐œ’ ๐‘—๐‘˜ ๐›ฝ kโ†’โˆž ฯƒ ๐›ฝ,๐›พ เทค ๐›ฝ๐›พ ๐›ฝ๐›พ ๐›ฝ โ€  ๐’ เทค ๐›ฝ โ€  ๐’ เทค 2๐ท ๐‘ž๐‘ž ๐ท ๐‘ž๐‘œ ๐›พ ๐›พ ๐‘œ ๐‘ž ๐’ ๐œ’ ๐‘ž๐‘ž ๐œ’ ๐‘ž๐‘ž ๐’ 16๐œŒ 2 + เทค ๐œ’ ๐‘ž๐‘œ ๐œ’ ๐‘ž๐‘œ ๐’ 16๐œŒ 2

  9. One-body body moment entum um distribut ibution ion - ๐’ ๐‘ถ (๐’) โ€“ The probability to find a proton/neutron with momentum ๐‘™ Two-bod ody y momentum entum distr tribut bution ion - ๐‘ฎ ๐‘ถ๐‘ถ (๐’) โ€“ The probability to find an NN pairs with relative momentum k ๐‘  ๐‘—๐‘˜โ†’0 เท ๐›ฝ ๐’” ๐‘—๐‘˜ ร— ๐ต ๐‘—๐‘˜ ๐›ฝ (๐‘บ ๐‘—๐‘˜ , ๐’” ๐‘™ ๐‘™โ‰ ๐‘—,๐‘˜ ) ๐œ” ๐œ’ ๐‘—๐‘˜ ๐›ฝ kโ†’โˆž ฯƒ ๐›ฝ,๐›พ เทค ๐›ฝ๐›พ ๐›ฝ๐›พ ๐›ฝ โ€  ๐’ เทค ๐›ฝ โ€  ๐’ เทค 2๐ท ๐‘ž๐‘ž ๐ท ๐‘ž๐‘œ ๐›พ ๐›พ ๐‘œ ๐‘ž ๐’ ๐œ’ ๐‘ž๐‘ž ๐œ’ ๐‘ž๐‘ž ๐’ 16๐œŒ 2 + เทค ๐œ’ ๐‘ž๐‘œ ๐œ’ ๐‘ž๐‘œ ๐’ 16๐œŒ 2 ๐›ฝ๐›พ ๐ท ๐‘—๐‘˜ kโ†’โˆž เท ๐›ฝ โ€  ๐’ เทค ๐›พ ๐’ ๐บ ๐‘—๐‘˜ ๐’ ๐œ’ ๐‘—๐‘˜ เทค ๐œ’ ๐‘—๐‘˜ 16๐œŒ 2 ๐›ฝ,๐›พ

  10. ๏ฝ As a result we get the asymptotic relation: ๐‘œ ๐‘ž ๐’ โ†’ ๐บ ๐‘ž๐‘œ ๐’ + 2๐บ ๐‘ž๐‘ž (๐’)

  11. ๏ฝ As a result we get the asymptotic relation: ๐‘œ ๐‘ž ๐’ โ†’ ๐บ ๐‘ž๐‘œ ๐’ + 2๐บ ๐‘ž๐‘ž (๐’) Using the variational Monte Carlo data (VMC) Wiringa et al. Phys. Rev. C 89, 024305 (2014)

  12. ๏ฝ Assuming only two wo signi gnifi fican ant channels nnels: The deuteron eron channel โ€“ L=0,2; S=1; J=1; T=0 The pure e s-wave channel โ€“ L=0; S=0; J=0; T=1 ๏ฝ We get: 2 + ๐ท ๐‘ž๐‘œ 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ ๐‘’ 0 ๐บ ๐‘ž๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ 0 ๐œ’ ๐‘œ๐‘œ 0 2 ๐บ ๐‘œ๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘œ๐‘œ ๐‘™

  13. ๏ฝ Assuming only two wo signi gnifi fican ant channels nnels: The deuteron eron channel โ€“ L=0,2; S=1; J=1; T=0 The pure e s-wave channel โ€“ L=0; S=0; J=0; T=1 ๏ฝ We get: 2 + ๐ท ๐‘ž๐‘œ 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ ๐‘’ 0 ๐บ ๐‘ž๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ 0 ๐œ’ ๐‘œ๐‘œ 0 2 ๐บ ๐‘œ๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘œ๐‘œ ๐‘™ Zero-energy The VMC solution of the data two-body system (AV18)

  14. 2 + ๐ท ๐‘ž๐‘œ ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 2 ๐‘’ 0 ๐บ ๐‘ž๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ 0 ๐œ’ ๐‘œ๐‘œ 0 2 ๐บ ๐‘œ๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘œ๐‘œ ๐‘™ Momentum space 10 B

  15. 2 + ๐ท ๐‘ž๐‘œ ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 2 ๐‘’ 0 ๐บ ๐‘ž๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ 0 ๐œ’ ๐‘œ๐‘œ 0 2 ๐บ ๐‘œ๐‘œ ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘œ๐‘œ ๐‘™ Momentum space Coordinate space 10 B 10 B

  16. 2 + ๐ท ๐‘ž๐‘œ 2 + 2๐ท ๐‘ž๐‘ž 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘ž ๐‘’ 0 0 ๐‘œ ๐‘ž ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ ๐‘™ Universal functions - Calculated for the two-body system

  17. 2 + ๐ท ๐‘ž๐‘œ 2 + 2๐ท ๐‘ž๐‘ž 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘ž ๐‘’ 0 0 ๐‘œ ๐‘ž ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ ๐‘™ Fitted to ๐บ ๐‘—๐‘˜ (๐‘™) for ๐‘™ > 4 fm โˆ’1

  18. 2 + ๐ท ๐‘ž๐‘œ 2 + 2๐ท ๐‘ž๐‘ž 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘ž ๐‘’ 0 0 ๐‘œ ๐‘ž ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ ๐‘™ The VMC data

  19. 2 + ๐ท ๐‘ž๐‘œ 2 + 2๐ท ๐‘ž๐‘ž 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘ž ๐‘’ 0 0 ๐‘œ ๐‘ž ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ ๐‘™ ๐‘œ ๐‘ž (๐‘™) 4 He

  20. 2 + ๐ท ๐‘ž๐‘œ 2 + 2๐ท ๐‘ž๐‘ž 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘ž ๐‘’ 0 0 ๐‘œ ๐‘ž ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ ๐‘™ ๐‘œ ๐‘ž (๐‘™) ๐‘ž๐‘ž/๐‘œ๐‘ž 4 He 4 He

  21. 2 + ๐ท ๐‘ž๐‘œ 2 + 2๐ท ๐‘ž๐‘ž 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘ž ๐‘’ 0 0 ๐‘œ ๐‘ž ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ ๐‘™ ๐‘œ ๐‘ž (๐‘™) ๐‘ž๐‘ž/๐‘œ๐‘ž 12 C 12 C

  22. 2 + ๐ท ๐‘ž๐‘œ 2 + 2๐ท ๐‘ž๐‘ž 2 ๐‘’ ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘œ 0 ๐œ’ ๐‘ž๐‘ž ๐‘’ 0 0 ๐‘œ ๐‘ž ๐‘™ ๐‘™โ†’โˆž ๐ท ๐‘ž๐‘œ ๐‘™ ๐‘™ ๐‘™ โˆž ๐œ’ ๐‘—๐‘˜ ๐›ฝ 2 ๐‘’ 3 ๐‘™ = 1 Normalization: ืฌ ๐‘™ ๐บ โˆž %๐‘‡๐‘†๐ท โ‰ก 1 ๐‘œ ๐‘ž ๐’ ๐‘’ 3 ๐‘™ = 1 ๐‘’ + ๐ท ๐‘ž๐‘œ 0 + 2๐ท ๐‘œ๐‘œ 0 ๐‘Ž เถฑ ๐‘Ž ๐ท ๐‘ž๐‘œ ๐ฟ ๐บ

  23. 4 He Total number of pairs: pp โ€“ 1 np-4

  24. 4 He Total number of pairs: pp โ€“ 1 np-4 ๐Ÿ /๐’‚ (%) ๐Ÿ /๐’‚ (%) ๐’† /๐š (%) ๐‘ซ ๐’’๐’’ ๐‘ซ ๐’’๐’ ๐‘ซ ๐’’๐’ k-space ๐Ÿ. ๐Ÿ•๐Ÿ” ยฑ ๐Ÿ. ๐Ÿ๐Ÿ’ ๐Ÿ. ๐Ÿ•๐Ÿ˜ ยฑ ๐Ÿ. ๐Ÿ๐Ÿ’ ๐Ÿ๐Ÿ‘. ๐Ÿ’ ยฑ ๐Ÿ. ๐Ÿ Non-combinatorial Neutron-proton isospin symmetry dominance (T=1)

  25. 4 He Total number of pairs: pp โ€“ 1 np-4 ๐Ÿ /๐’‚ (%) ๐Ÿ /๐’‚ (%) ๐’† /๐š (%) %SRCs ๐‘ซ ๐’’๐’’ ๐‘ซ ๐’’๐’ ๐‘ซ ๐’’๐’ k-space 14.3 % 0.65 ยฑ 0.03 0.69 ยฑ 0.03 12.3 ยฑ 0.1

  26. 4 He Total number of pairs: pp โ€“ 1 np-4 ๐Ÿ /๐’‚ (%) ๐Ÿ /๐’‚ (%) ๐’† /๐š (%) %SRCs ๐‘ซ ๐’’๐’’ ๐‘ซ ๐’’๐’ ๐‘ซ ๐’’๐’ k-space 14.3 % 0.65 ยฑ 0.03 0.69 ยฑ 0.03 12.3 ยฑ 0.1 r-space 13.3% 0.567 ยฑ 0.004 11.61 ยฑ 0.03 Similar results are obtained for all the available nuclei in the VMC data

  27. ๏ฝ Moment entum um distribut ibutions ions R. Weiss, B. Bazak, N. Barnea, PRC 92 92, 054311 (2015) M. Alvioli, CC. Degli Atti, H. Morita, PRC 94 94, 044309 (2016) ๏ฝ The e Levin vinger er constant tant R. Weiss, B. Bazak, N. Barnea, PRL 114 114, 012501 (2015) R. Weiss, B. Bazak, N. Barnea, EPJA 52 52, 92 (2016) ๏ฝ Elect ctron ron scatt ttering ering O. Hen et al., PRC 92 92, 045205 (2015) ๏ฝ Symme mmetry try energ rgy BJ. Cai, BA. Li, PRC 93 93, 014619 (2016) ๏ฝ The e Coulomb lomb sum rule le (and nd a review) iew) R. Weiss, E. Pazy, N. Barnea, Few-Body Systems (2016) ๏ฝ The e EMC effect t JW. Chen, W. Detmold, J. E. Lynn, A. Schwenk, arxiv 1607.03065 [hep-ph] (2016) and moreโ€ฆ

  28. Two-body Two-body momentum coordinate distribution for density for ๐’ > ๐Ÿ“ ๐ ๐ง โˆ’๐Ÿ ๐’” < ๐Ÿ ๐ ๐ง Extracting the contacts Full details on SRCs for ๐’ > ๐’ ๐‘ฎ

  29. Two-body Two-body momentum coordinate distribution for density for ๐’ > ๐Ÿ“ ๐ ๐ง โˆ’๐Ÿ ๐’” < ๐Ÿ ๐ ๐ง np dominance & pp/np Extracting the contacts Isospin symmetry %SRCs Main (๐‘€, ๐‘‡, ๐พ, ๐‘ˆ) Full details channels on SRCs for ๐’ > ๐’ ๐‘ฎ 1B momentum distribution

Recommend


More recommend