classical de sitter solutions and the swampland
play

Classical de Sitter solutions and the swampland David ANDRIOT - PowerPoint PPT Presentation

David ANDRIOT Classical de Sitter solutions and the swampland David ANDRIOT Introduction Stringy de Sitter CERN, Geneva, Switzerland Consequences, refinements Constraints Based on arXiv:1609.00385 (with J. Bl ab ack), 1710.08886


  1. David ANDRIOT Classical de Sitter solutions and the swampland David ANDRIOT Introduction Stringy de Sitter CERN, Geneva, Switzerland Consequences, refinements Constraints Based on arXiv:1609.00385 (with J. Bl˚ ab¨ ack), 1710.08886 class. de Sitter arXiv:1806.10999, 1807.09698, 1811.08889 (with C. Roupec) Summary 12/12/2018 ICTP, Trieste, Italy

  2. Introduction David ANDRIOT Landscape Swampland Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  3. Introduction David ANDRIOT Landscape : many low energy EFT / solutions or vacua obtained from string theory Ñ criticism of string theory as non-predictive ã More troublesome: is any matching our world? In which corner? Swampland Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  4. Introduction David ANDRIOT Landscape : many low energy EFT / solutions or vacua obtained from string theory Ñ criticism of string theory as non-predictive ã More troublesome: is any matching our world? In which corner? Swampland : models that cannot be obtained from Introduction quantum gravity Stringy de Sitter Ñ change of strategy / “paradigm shift” ã Consequences, refinements More useful to distinguish different cosmological or BSM Constraints models class. de Sitter Joins the idea of EFT and U.V. completion Summary

  5. Introduction David ANDRIOT Landscape : many low energy EFT / solutions or vacua obtained from string theory Ñ criticism of string theory as non-predictive ã More troublesome: is any matching our world? In which corner? Swampland : models that cannot be obtained from Introduction quantum gravity Stringy de Sitter Ñ change of strategy / “paradigm shift” ã Consequences, refinements More useful to distinguish different cosmological or BSM Constraints models class. de Sitter Joins the idea of EFT and U.V. completion Summary “Swampland program” : give a list of properties / criteria for a model to be or not in swampland List given e.g. in T. D. Brennan, F. Carta, C. Vafa [arXiv:1711.00864]

  6. List: David ANDRIOT - No continuous global symmetry - ... - ... - ... - ... - Weak Gravity conjecture (several versions) N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa [hep-th/0601001] - Distance conjecture Introduction H. Ooguri, C. Vafa [hep-th/0605264], D. Klaewer, E. Palti [arXiv:1610.00010] Stringy de Sitter - Non-SUSY AdS conjecture Consequences, refinements H. Ooguri, C. Vafa [arXiv:1610.01533], B. Freivogel, M. Kleban [arXiv:1610.04564] Constraints class. de Sitter - de Sitter conjecture/criterion Summary G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa [arXiv:1806.08362] - ... Here: focus on de Sitter conjecture + good illustration of the swampland idea

  7. David De Sitter conjecture: ANDRIOT G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa, [arXiv:1806.08362] Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  8. David De Sitter conjecture: ANDRIOT G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa, [arXiv:1806.08362] Consider a 4d theory of minimally coupled scalars φ i ( M 4 “ 1) ˆ ˙ ż R 4 ´ 1 2 g ij p φ qB µ φ i B µ φ j ´ V p φ q a d 4 x S “ | g 4 | solutions as extrema of potential: B φ i V | 0 “ 0, R 4 “ 2 V | 0 ñ de Sitter solutions: Λ 4 “ 1 Introduction 2 V | 0 ą 0. Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  9. David De Sitter conjecture: ANDRIOT G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa, [arXiv:1806.08362] Consider a 4d theory of minimally coupled scalars φ i ( M 4 “ 1) ˆ ˙ ż R 4 ´ 1 2 g ij p φ qB µ φ i B µ φ j ´ V p φ q a d 4 x S “ | g 4 | solutions as extrema of potential: B φ i V | 0 “ 0, R 4 “ 2 V | 0 ñ de Sitter solutions: Λ 4 “ 1 Introduction 2 V | 0 ą 0. Stringy de Sitter Criterion : if NOT in the swampland, one has: Consequences, refinements | ∇ V | ě c V at any point in field space Constraints class. de Sitter a with c ą 0, | ∇ V | “ g ij B φ i V B φ j V Summary c „ O p 1 q

  10. David De Sitter conjecture: ANDRIOT G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa, [arXiv:1806.08362] Consider a 4d theory of minimally coupled scalars φ i ( M 4 “ 1) ˆ ˙ ż R 4 ´ 1 2 g ij p φ qB µ φ i B µ φ j ´ V p φ q a d 4 x S “ | g 4 | solutions as extrema of potential: B φ i V | 0 “ 0, R 4 “ 2 V | 0 ñ de Sitter solutions: Λ 4 “ 1 Introduction 2 V | 0 ą 0. Stringy de Sitter Criterion : if NOT in the swampland, one has: Consequences, refinements | ∇ V | ě c V at any point in field space Constraints class. de Sitter a with c ą 0, | ∇ V | “ g ij B φ i V B φ j V Summary c „ O p 1 q ñ extremum: | ∇ V | 0 “ 0 ñ V | 0 ď 0 Ñ no de Sitter solution for a theory coming from string theory. ã

  11. ñ Why? Motivations? ñ Consequences? David ANDRIOT Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  12. ñ Why? Motivations? ñ Consequences? David ANDRIOT Motivation: 1 Difficult to obtain de Sitter solutions / vacua from string theory in a controlled manner. Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  13. ñ Why? Motivations? ñ Consequences? David ANDRIOT Plan : 1 De Sitter solutions in string theory 2 Consequences and refined versions of conjecture 3 Constraints on classical de Sitter solutions Motivation: 1 Difficult to obtain de Sitter solutions / vacua from string theory in a controlled manner. Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  14. ñ Why? Motivations? ñ Consequences? David ANDRIOT Plan : 1 De Sitter solutions in string theory 2 Consequences and refined versions of conjecture 3 Constraints on classical de Sitter solutions Motivation: 1 Difficult to obtain de Sitter solutions / vacua from string theory in a controlled manner. 2 Criterion essentially example based; deeper quantum Introduction gravity argument? Stringy de Sitter Consequences, - Connection to other swampland conjecture: distance refinements conjecture H. Ooguri, E. Palti, G. Shiu, C. Vafa [arXiv:1810.05506] Constraints class. de Sitter Summary

  15. ñ Why? Motivations? ñ Consequences? David ANDRIOT Plan : 1 De Sitter solutions in string theory 2 Consequences and refined versions of conjecture 3 Constraints on classical de Sitter solutions Motivation: 1 Difficult to obtain de Sitter solutions / vacua from string theory in a controlled manner. 2 Criterion essentially example based; deeper quantum Introduction gravity argument? Stringy de Sitter Consequences, - Connection to other swampland conjecture: distance refinements conjecture H. Ooguri, E. Palti, G. Shiu, C. Vafa [arXiv:1810.05506] Constraints class. de Sitter - Line of thoughts from non-SUSY AdS conjecture: Summary non-SUSY AdS solutions (with finite number of fields) is unstable / not a trustable solution ( � with holographic attempts) Ñ only SUSY solutions are � ? See [arXiv:1711.00864] ã - Difficult to build holographic duals to de Sitter - Difficult to have well-defined QFT on de Sitter, so what about quantum gravity?

  16. De Sitter solutions in string theory David ANDRIOT Recent review: U. H. Danielsson, T. Van Riet [arXiv:1804.01120] Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  17. De Sitter solutions in string theory David ANDRIOT Recent review: U. H. Danielsson, T. Van Riet [arXiv:1804.01120] Complicated interplay between quantum gravity ( 10d supergravity/string theory) and cosmological model ( 4d low energy effective theory) Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  18. De Sitter solutions in string theory David ANDRIOT Recent review: U. H. Danielsson, T. Van Riet [arXiv:1804.01120] Complicated interplay between quantum gravity ( 10d supergravity/string theory) and cosmological model ( 4d low energy effective theory) Introduction Three main stringy constructions to get de Sitter: Stringy de Sitter 1 Classical solutions (10d) Consequences, refinements 2 KKLT, (LVS), ... (10d/4d) Constraints class. de Sitter 3 Non-geometric fluxes (4d) Summary Other approaches, e.g. world-sheet, heterotic, asymmetric orbifolds...

  19. 1 Classical 10d solutions The simplest option / best controlled setting: David ANDRIOT classical (perturbative) string background: 10d supergravity sol. 4d de Sitter ˆ 6d compact manifold + fluxes, orientifold O p -planes, D p -branes, curvature ( R 6 ă 0) Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

  20. 1 Classical 10d solutions The simplest option / best controlled setting: David ANDRIOT classical (perturbative) string background: 10d supergravity sol. 4d de Sitter ˆ 6d compact manifold + fluxes, orientifold O p -planes, D p -branes, curvature ( R 6 ă 0) But very difficult to find such (stable) de Sitter solutions! Introduction Stringy de Sitter Consequences, refinements Constraints class. de Sitter Summary

Recommend


More recommend