charge changing and total interaction cross section
play

Charge-changing and total interaction cross section measurements - PowerPoint PPT Presentation

Charge-changing and total interaction cross section measurements Maya Takechi, Niigata University Collaborators M. Tanaka, 2 A. Homma, 1 Y. Tanaka, 2 T. Suzuki, 3 M. Fukuda, 2 D. Nishimura, 4 T. Moriguchi, 5 D. S. Ahn,


  1. Charge-changing and total interaction cross section measurements Maya Takechi, Niigata University

  2. Collaborators M. Tanaka, ∗ 2 A. Homma, ∗ 1 Y. Tanaka, ∗ 2 T. Suzuki, ∗ 3 M. Fukuda, ∗ 2 D. Nishimura, ∗ 4 T. Moriguchi, ∗ 5 D. S. Ahn, ∗ 6 A. S. Aimaganbetov, ∗ 7, ∗ 8 M. Amano, ∗ 5 H. Arakawa, ∗ 3 S. Bagchi, ∗ 9 K.-H. Behr, ∗ 9 N. Burtebayev, ∗ 7 K. Chikaato, ∗ 1 H. Du, ∗ 2 T. Fujii, ∗ 3 N. Fukuda, ∗ 6 H. Geissel, ∗ 9 T. Hori, ∗ 2 S. Hoshino, ∗ 1 R. Igosawa, ∗ 3 A. Ikeda, ∗ 1 N. Inabe, ∗ 6 K. Inomata, ∗ 3 K. Itahashi, ∗ 6 T. Izumikawa, ∗ 10 D. Kamioka, ∗ 5, N. Kanda, ∗ 1 I. Kato, ∗ 3 I. Kenzhina, ∗ 11 Z. Korkulu, ∗ 6 Ye. Kuk, ∗ 7, ∗ 8 K. Kusaka, ∗ 6 K. Matsuta, ∗ 2 M. Mihara, ∗ 2 E. Miyata, ∗ 1 D. Nagae, ∗ 6 S. Nakamura, ∗ 1 M. Nassurlla, ∗ 7 K. Nishimuro, ∗ 3 K. Nishizuka, ∗ 1 S. Ohmika, ∗ 3, K. Ohnishi, ∗ 2 M. Ohtake, ∗ 6 T. Ohtsubo, ∗ 1 H. J. Ong, ∗ 12 A. Ozawa, ∗ 5 A. Prochazka, ∗ 9 H. Sakurai, ∗ 6, C. Scheidenberger, ∗ 9 Y. Shimizu, ∗ 6 T. Sugihara, ∗ 2 T. Sumikama, ∗ 6 S. Suzuki, ∗ 5 H. Suzuki, ∗ 6 H. Takeda, ∗ 6 Y. K. Tanaka, ∗ 9 T. K. Zholdybayev, ∗ 7 T. Wada, ∗ 1 K. Wakayama, ∗ 3 , S. Yagi, ∗ 2 T. Yamaguchi, ∗ 3, R. Yanagihara, ∗ 2 Y. Yanagisawa, ∗ 6 and K. Yoshida ∗ 3 ∗ 1 Department of Physics, Niigata University , ∗ 2 Department of Physics, Osaka University , . ∗ 3 Department of Physics, Saitama University , ∗ 4 Department of Physics, Tokyo University of Science , ∗ 5 Institute of Physics, University of Tsukuba , ∗ 6 RIKEN Nishina Center , ∗ 7 The Institute of Nuclear Physics Kazakhstan ∗ 8 L. N. Gumilyov Eurasian National University , ∗ 9 GSI Helmholtzzentrum fu ̈ r Schwerionenforschung . ∗ 10 Radioactive Isotope Center, Niigata University , ∗ 11 Al - Farabi Kazakh National University . ∗ 12 Research Center for Nuclear Physics, Osaka University 
 .

  3. with the comparison to Theories discussed extensively Halo, and Deformation have been Curve calculated from known radii Stable Nuclei Follows A 1/3 Nuclear Size and Interaction Cross Sections 37 Mg Reaction Cross Section Interaction Cross Section σ tot = σ R + σ el σ I = σ R - σ inel 31 Ne I. Tanihata et al., Phys. Lett. B 206 (1988) 592. σ I or σ R Nuclear Size M. Takechi et al., Glauber Calculation Phys. Lett. B 707 (2012) 357. Example , & ) / T j ( r - b ) i ( r ) ρ z 1 − exp − d 2 r P ∫ ∫ ∑ ( ) ρ z d b σ NN E σ R = . 1 ( + ���� Halo Nucleus R . 1 ' * i , j - 0 ����������� ����� ✡������� ☛☞✌✍ 11 Li σ R can be uniquely calculated by 3 quantities ���� 11 Li ρ P ρ T 9 Li Projectile Density Target Density 8 Li 11 Be 7 Li ��� σ NN Nucleon- Nucleon Total Cross Section 6 Li Nuclear Size of unknown Nuclei ��� → Halo features Li Isotopes Next : Neutron Skin Thickness of ��� � � � �� �� �� ✎��� ✏✑☞✌�� Nuclei A>40

  4. Neutron Skin and Nuclear Matter EOS K. Oyamatsu and K. Iida PRC 81 , 054302 (2010) K 0 L 2 + d " % 2 S 0 + 3 n 0 Q V c w 0 + 18 n 0 Q V Q V w n , d n - n 0 n - n 0 2 n 0 : saturation density, w 0 : saturation energy K 0 : incompressibility, S 0 : symmetry energy at n = n 0 L : gradient δ = ( N - Z )/ A L : Density derivative coefficient of symmetry energy First Key Parameter : L How to know L? One Simple correlation between L and Neutron Skin M. Centelles et al., PRL 102, 122502 (2009) K 0 L 2 + d " % 2 S 0 + 3 n 0 Q V c w 0 + 18 n 0 Q V Q V EOS around N ⋍ Z w n , d n - n 0 n - n 0 2 Droplet Model ~0.1 fm -3 When the density of nuclear matter is around nuclear surface density Symmetry term a A ⋍ symmetry term of EOS Neutron skin thickness Δ R ~ L × δ + correction term δ = ( N - Z )/ A, A > 40 Measurement of δ dependence of Δ R L

  5. Existing data for Neutron Skin Thickness Prediction from NL3 interaction Neutron Star R 1.4M ⊙ 15km M max = 2.8 M ⊙ FSUGold interaction Neutron Skin thickness Δ R (fm) Neutron Star R 1.4M ⊙ 13km M max = 1.7 M ⊙ M. Centelles et al., Analysis of L using Antiprotonic Atom Data from A = 40 ~ 238 Neutron skin thickness Δ R ~ L × δ + correction term L 25 ~ 115 MeV Various Results δ = (N-Z) / A Anti Protonic Atom : A. Trzcinska et al., Phys. Rev. Lett. 87 082501 (2001). GDR : A. Krasznahorkay et al., Nucl. Phys. A 567 521 (1994). SDR : A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999). SDR : A. Krasznahorkay et al., Nucl. Phys. A 731 224 (2004). Li-Gang Cao, H. Sagawa, G. Col’o ES : S. Terashima et al., Phys. Rev. C 77 024317 (2008). Skin thickness for Neutron-rich Nuclei Nuclear Structure in China 2012 (2012) 33 ES : J. Zenihiro et al., Phys. Rev. C 82 044611 (2010).

  6. How to determine Neutron Skin Thickness for Exotic Nuclei? Neutron Skin Δ R = Neutron Radius R n - Proton Radius R p σ I (Interaction cross section ) → Matter Radius , / & ) σ I Rm T j ( r - b ) 1 − exp − d 2 r P i ( r ) ρ z ∫ ∫ ∑ ( ) ρ z d b σ NN E σ R = . 1 ( + R . 1 ' * i , j - 0 To know Neutron Skin Thickness, Rp is necessary! Proton Radii Stable Nuclei : Sensitive to the Electron Scattering Experiment Coulomb Potential of X-ray Measurements Muonic Atom Protons Unstable Nuclei : Isotope shift Measurements σ CC New Method : R p Charge Changing Cross Section

  7. Proton Distribution Radius Rp and σ CC Rp ( Electron Scattering Data) vs σ CC 2000 58 Ni σ CC → Proton Radius ? 1500 Glauber Calculation for σ CC 28 Si CCCS (mb) σ CC calculation using charge distribution of nucleus 1000 " % F I # # # S X Projectile t proton Projectile t neutron T arg et T arg et v cc = d b 1 - exp - v pp + v np t proton t proton 10 Be 500 σ CC Strong Correlation between R p Protin Radii and σ CC 0 ? 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 R c (fm)

  8. Determination of skin thickness Charge radii from CC cross sections Glauber Calculation for σ CC σ CC calculation using charge distribution of nucleus " % F I # # # S X Projectile t proton Projectile t neutron T arg et T arg et d b 1 - exp - v pp v cc = + v np t proton t proton Determination of charge radius σ CC from Be to Ni for 16 C from σ CC (HIMAC) Calibration of 58 Ni 9 Be σ CC (Expt..) / σ CC (Calc.) 10 B for light nuclei 11 Be 18 O 28 Si in wide range of Z/N 40 Ca σ CC Expt. (Charge Radii known) 16 O T. Yamaguchi et al., PRL. 107 , 032502 (2011) Be to O 9 Be, 10 B, Borromeans Determination of charge radius for 12 - 19 C from σ CC (GSI) ~1 GeV/u N/Z ~ 1 Nuclei R. Kanungo et al., PRL 117 , (2016) 102501 How about unstable, σ CC Calc. heavier nuclei A>40 ? σ CC(Expt..) / σ CC(Calc.) ~ Constant

  9. σ CC Measurements σ CC Measurements for 40-48, 50 Ca, 58-64 Ni, 38-47 K, 62-80 Cu Charge Radii are known (Isotope-shift Measurements) Study of σ CC (Expt..) / σ CC (Calc.) for A>40 nuclei in wide Z/N range And σ I and σ CC Measurements for 58-78 Ni

  10. Existing data for Neutron Skin Thickness Prediction from NL3 interaction Neutron Star R 1.4M ⊙ 15km M max = 2.8 M ⊙ FSUGold interaction Neutron Skin thickness Δ R (fm) Neutron Star R 1.4M ⊙ 13km M max = 1.7 M ⊙ M. Centelles et al., Analysis of L using Antiprotonic Atom Data from A = 40 ~ 238 Neutron skin thickness Δ R ~ L × δ + correction term L 25 ~ 115 MeV Various Results δ = (N-Z) / A Anti Protonic Atom : A. Trzcinska et al., Phys. Rev. Lett. 87 082501 (2001). GDR : A. Krasznahorkay et al., Nucl. Phys. A 567 521 (1994). SDR : A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999). SDR : A. Krasznahorkay et al., Nucl. Phys. A 731 224 (2004). Li-Gang Cao, H. Sagawa, G. Col’o ES : S. Terashima et al., Phys. Rev. C 77 024317 (2008). Skin thickness for Neutron-rich Nuclei Nuclear Structure in China 2012 (2012) 33 ES : J. Zenihiro et al., Phys. Rev. C 82 044611 (2010).

  11. Experiment at RIBF RIBF ZDS F11, two MUSICs from GSI

  12. Experiment at RIBF ZDS 238 U Beam 345 MeV/u 30 pnA Abrasion Fission on Be Target BigRIPS Fission Fragments 238 U Beam Fissile Nucleus Target

  13. Produced Beam around Ni Region 238 U on Be Abrasion Fission 84 Ge 83 Ga 82 Zn 84 Ge 81-83 Ga 68-82 Zn 62-80 Cu 58-78 Ni 61-76 Co 56-65 Fe 54-57 Mn 55-56 Cr Produced Beam around Ca Region 40-50 Ca 41-48 K 39-46 Sc etc. …

  14. σ CC Measurements for 40-48, 50 Ca, 58-64 Ni, 38-47 K, 62-80 Cu Charge Radii are known (Isotope-shift Measurements) σ I and σ CC Measurements for 58-78 Ni and nuclides nearby Measurements : Transmission Method ✍������� ✡�����☛�☞ �������� ✡�����☛�☞ ✌ � ✌ � $ ' σ R = − 1 t ln N 2 σ I or CC & ) N 1 % ( N 1 : Incident particle �������� �������� σ I N 2 : Without changing Z and A �������� ������ σ CC N 2 : Without changing Z

  15. Experimental Setup F5 Wedge-Shape C Reaction Target F11 BigRIPS F0 C Reaction Target ( 第0焦点面 ) F11 Be Prod. Target BigRIPS F5 F9 F9 F10 F8 F12 BigRIPS F3 BigRIPS BigRIPS ZDS σ I and σ CC Measurements σ CC Measurements at 260 MeV/u at 170 MeV/u σ CC at two different energies and σ I measured simultaneously

Recommend


More recommend