character polynomials problem
play

Character Polynomials Problem From Stanleys Positivity Problems in - PowerPoint PPT Presentation

Character Polynomials Problem From Stanleys Positivity Problems in Algebraic Combinatorics Problem 12: Give a combinatorial interpretation of the row sums of the character table for S n (combinatorial proof of non-negativity)


  1. Character Polynomials

  2. Problem • From Stanley’s Positivity Problems in Algebraic Combinatorics • Problem 12: Give a combinatorial interpretation of the row sums of the character table for S n (combinatorial proof of non-negativity)

  3. Symmetric Group • S n = permutations of n things • Contains n ! elements • S 3 =permutations of {1,2,3} (123, 132, 213, 231, 312, 321) • Permutations can be represented with n × n matrices • Character: trace of a matrix representation • Character Table: table of all irreducible characters of a group

  4. Representations of S 3 • vertices of an equilateral triangle   0    1   1     3 3      2 2       3 2     1 1           2 2

  5. Representations of S 3 • vertices of an equilateral triangle • pick a permutation: 123  312   0    1   1     3 3      2 2       3 2     1 1           2 2

  6. Representations of S 3 • vertices of an equilateral triangle • pick a permutation: 123  312   0    3   1     3 3      2 2       2 1     1 1           2 2

  7. Representations of S 3 • 123  312 is 120 ° CW rotation   1 3    2 2     3 1       2 2  1 2  1 2   1 • Character = Trace =

  8. Character Table for S 3 1,1,1 2,1 3 3 1 1 1 2,1 2 0 -1 1,1,1 1 -1 1

  9. Character Table for S 4 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 3 1 -1 0 -1 2 0 2 -1 0 3 -1 -1 0 1 1 -1 1 1 -1

  10. Character Polynomials • compute characters without matrices • depend only on small parts of the cycle type • connections to Murnaghan-Nakayama rule, Schur functions

  11. Character Table for S 4 Sum 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 5 3 1 -1 0 -1 2 2 0 2 -1 0 3 2 3 -1 -1 0 1 1 1 -1 1 1 -1

  12. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 n -2,2 n -2,1 2 n -3,3 n -3,2,1 n -3,1 3 n -4,1 4

  13. Character Table for S 4 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 3 1 -1 0 -1 2 0 2 -1 0 3 -1 -1 0 1 1 -1 1 1 -1

  14. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 a 2  a 1  a 1 ( a 1  1) n -2,2 2  a 2  a 1  1  a 1 ( a 1  1) n -2,1 2 2 n -3,3 n -3,2,1 n -3,1 3 n -4,1 4

  15. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 a 2  a 1  a 1 ( a 1  1) n -2,2 2  a 2  a 1  1  a 1 ( a 1  1) n -2,1 2 2 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,3 2 6  a 3  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2)  a 1 n -3,2,1 3 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,1 3  a 1  1 2 6 n -4,1 4

  16. Character Polynomials Partition Polynomial 1 n a 1  1 n -1,1 a 2  a 1  a 1 ( a 1  1) n -2,2 2  a 2  a 1  1  a 1 ( a 1  1) n -2,1 2 2 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,3 2 6  a 3  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2)  a 1 n -3,2,1 3 a 3  a 1 a 2  a 2  a 1 ( a 1  1)  a 1 ( a 1  1)( a 1  2) n -3,1 3  a 1  1 2 6 n -4,1 4   a a ( 1) a a ( 1)        2 2 2 2 a a a a a a a 4 1 3 1 3 1 2 2 2       a a ( 1)( a 2)( a 3) a a ( 1)( a 2) a a ( 1)     1 1 1 1 1 1 1 1 1 a 1 2 24 6 2

  17. Generating Functions and Row Sums 1 p ( n ) x n    1  x i n  0 i  1 1  1  x i  (1+ x + x 2 + x 3 + x 4 +···)(1+ x 2 + x 4 +···)(1+ x 3 + x 6 +···)(1+ x 4 + x 8 +···)+··· i  1 Can get x 4 from: 1. x 4 · 1 · 1 · 1  1,1,1,1 2. x · 1 · x 3 · 1  3,1 3. 1 · x 4 · 1 · 1  2,2 4. x 2 · x 2 · 1 · 1  2,1,1 5. 1 · 1 · 1 · x 4  4 • p (4)=5

  18. Example: n -1,1 a 1  1 Character Polynomial: 1 ux      2 2 3 3 1 ux u x u x  1  1      2 2 3 0 x 2 ux 3 u x   u 1 ux  1      2 3 0 2 3 x x x   1 u u x  1 u counts number of 1 s!

  19. Example: n -1,1   u (1  ux )  1  x (1  ux )  2  x    1 (1 ) u x   2 u (1 x )  u 1 1 p ( n ) x n    1  x i n  0 i  1  1 1 x 1         i i u 1 ux 1 x 1 x 1 x    i 2 i 1 u 1

  20. Example: n -1,1 x 1 x     n ( ) p n x   i 1 x 1 x 1 x   1 n 0 i      2 3 n ( x x x ) p n x ( )  0 n      x n a 1           n ( 1) ( 2) ( 3) x p n p n p n          Row Sum= ( 1) ( 2) ( 3) ( ) p n p n p n p n

  21. Row Row Sum Rows Sums p ( n ) n            ( 1) ( 2) ( 3) ( 4) ( 5) ( ) p n p n p n p n p n p n n -1,1             p n ( 2) p n ( 3) 3 ( p n 4) 3 ( p n 5) 5 ( p n 6) p n ( 1) n -2,2              ( ) ( 2) ( 3) ( 4) 3 ( 5) 3 ( 6) ( 1) p n p n p n p n p n p n p n n -2,1 2           n -3,3 ( 3) 4 ( 5) 7 ( 6) 12 ( 7) 2 ( 2) p n p n p n p n p n             p n ( 1) p n ( 4) 5 ( p n 5) 10 ( p n 6) p n ( 2) 2 ( p n 3) n -3,2,1            n -3,1 3 ( 1) ( 2) ( 4) ( 5) 6 ( 6) ( ) p n p n p n p n p n p n

  22. Growth of p ( n ) • p ( n - 1) ≤ p ( n ) ≤ p ( n -1)+ p ( n -2)

  23. Row Row Sum Positivity Rows Sums ( ) p n n            ( 1) ( 2) ( 3) ( 4) ( 5) ( ) p n p n p n p n p n p n n -1,1             p n ( 2) p n ( 3) 3 ( p n 4) 3 ( p n 5) 5 ( p n 6) p n ( 1) n -2,2              ( ) ( 2) ( 3) ( 4) 3 ( 5) 3 ( 6) ( 1) p n p n p n p n p n p n p n n -2,1 2           n -3,3 ( 3) 4 ( 5) 7 ( 6) 12 ( 7) 2 ( 2) p n p n p n p n p n             p n ( 1) p n ( 4) 5 ( p n 5) 10 ( p n 6) p n ( 2) 2 ( p n 3) n -3,2,1            n -3,1 3 ( 1) ( 2) ( 4) ( 5) 6 ( 6) ( ) p n p n p n p n p n p n

  24. Growth of p ( n ) • p ( n - 1) ≤ p ( n ) ≤ p ( n -1)+ p ( n -2) • super-polynomial, sub-exponential  n Q x ( ) p n x ( )  n 0 • asymptotics good enough to show that finitely many subtracted terms guaranteed to cancel out for n sufficiently large

  25. From the bottom up • The sum of the last row is the number of self-conjugate partitions of n , call this s ( n ) . • Conjugate row obtained by multiplying by bottom row

  26. Character Table for S 4 1 4 2,1 2 2 2 3,1 4 1 1 1 1 1 3 1 -1 0 -1 2 0 2 -1 0 3 -1 -1 0 1 1 -1 1 1 -1

  27. From the bottom up • The sum of the last row is the number of self-conjugate partitions of n , call this s ( n ) . • Conjugate row obtained by multiplying by bottom row 1      n n s n x ( ) Q x ( ) s ( ) n x   1 ( 1) i i x    n 0 i 1 n 0 • For every row sum formula in terms of p ( n ) , the conjugate row has the same formula in terms of s ( n ) . • s ( n -1 ) ≤ s ( n ) ≤ s ( n -1)+ s ( n -2) for n > 1

  28. Words of Wisdom The worst thing you can do to a problem is to solve it completely… because then you have to find something else to work on. ̶ Dan Kleitman

Recommend


More recommend